Search results for "Disordered system"

showing 10 items of 244 documents

Theory of orientational glasses models, concepts, simulations

1992

Abstract This review describes the various attempts to develop a theoretical understanding for ordering and dynamics of randomly diluted molecular crystals, where quadrupole moments freeze in random orientations upon lowering the temperature, as a result of randomness and competing interactions. While some theories attempt to model this freezing into a phase with randomly oriented quadrupole moments in terms of a bond-disorder concept analogous to the Edwards-Anderson model of spin glasses, other theories attribute the freezing to random field-like terms in the Hamiltonian. While models of the latter type have been studied primarily by microscopic molecular field-type treatments, the former…

PhysicsPhase transitionRandom fieldSpin glassMean field theoryIsing modelStatistical physicsCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksOrientational glassRandomnessPotts modelAdvances in Physics
researchProduct

The four dimensional Ising spin glass: A Monte Carlo study (invited)

1991

We describe results of Monte Carlo simulation studies on the Ising spin glass in four dimensions on a hypercubic lattice with nearest neighbor bonds. Studies of the equilibrium static properties show that the system undergoes a genuine phase transition to an ordered spin glass phase. Critical dynamical behavior is analyzed to obtain the dynamic exponent. Finally, we describe results on the spin glass phase, in particular the finite size scaling of the order parameter distribution function, and compare it with existing models of the spin glass phase, namely the droplet model and the Parisi solution for the low temperature phase of the infinite range spin glass.

PhysicsPhase transitionSpin glassCondensed matter physicsLattice (order)Critical phenomenaMonte Carlo methodOrder and disorderGeneral Physics and AstronomyIsing modelStatistical physicsCondensed Matter::Disordered Systems and Neural NetworksScalingJournal of Applied Physics
researchProduct

Second-Order Phase Transition Induced by Deterministic Fluctuations in Aperiodic Eight-State Potts Models

1999

We investigate the influence of aperiodic modulations of the exchange interactions between nearest-neighbour rows on the phase transition of the two-dimensional eight-state Potts model. The systems are studied numerically through intensive Monte Carlo simulations using the Swendsen-Wang cluster algorithm for different aperiodic sequences. The transition point is located through duality relations, and the critical behaviour is investigated using FSS techniques at criticality. While the pure system exhibits a first-order transition, we show that the deterministic fluctuations resulting from the aperiodic coupling distribution are liable to modify drastically the physical properties in the nei…

PhysicsPhase transitionStatistical Mechanics (cond-mat.stat-mech)Monte Carlo methodDuality (optimization)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksFixed pointCondensed Matter PhysicsCoupling (probability)Electronic Optical and Magnetic MaterialsTransition pointAperiodic graphStatistical physicsCondensed Matter - Statistical MechanicsPotts model
researchProduct

The effect of active photons on dynamical frustration in cavity QED

2020

We study the far-from-equilibrium dynamical regimes of a many-body spin boson model with disordered couplings relevant for cavity QED and trapped ions experiments, using the discrete truncated Wigner approximation (DTWA). We focus on the dynamics of spin observables upon varying the disorder strength and the frequency of the photons, finding that the latter can considerably alter the structure of the system's dynamical responses. When the photons evolve at a similar rate as the spins, they can induce qualitatively distinct frustrated dynamics characterized by either logarithmic or algebraically slow relaxation. The latter illustrates resilience of glassy-like dynamics in the presence of act…

PhysicsPhotonSpinsPhononmedia_common.quotation_subjectDegrees of freedom (physics and chemistry)General Physics and AstronomyFrustrationFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural Networks01 natural sciencesQuantum mechanics0103 physical sciences010306 general physicsQuantum information scienceQuantumSpin-½media_common
researchProduct

Emergent hydrodynamics in a strongly interacting dipolar spin ensemble.

2021

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent "classical" properties of a system (e.g. diffusivity, viscosity, compressibility) from a generic microscopic quantum Hamiltonian. Here, we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometer length scales. In particular, the combination of positional di…

PhysicsQuantum PhysicsMultidisciplinaryRandom fieldCondensed Matter - Mesoscale and Nanoscale PhysicsQuantum simulatorFOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksFick's laws of diffusionDipolesymbols.namesakeClassical mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Spin diffusionsymbolsddc:500Spin (physics)Hamiltonian (quantum mechanics)Quantum Physics (quant-ph)QuantumNature
researchProduct

Domain-wall excitations in the two-dimensional Ising spin glass

2018

The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to $10\,000\times 10\,000$ spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic…

PhysicsQuantum PhysicsSpin glassStatistical Mechanics (cond-mat.stat-mech)SpinsPhase (waves)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksComputational Physics (physics.comp-ph)01 natural sciences010305 fluids & plasmasTheoretical physicsDomain wall (magnetism)Spin wave0103 physical sciencesCombinatorial optimizationIsing spinQuantum Physics (quant-ph)010306 general physicsPhysics - Computational PhysicsCritical exponentCondensed Matter - Statistical MechanicsPhysical Review B
researchProduct

Spherical random-field systems with long-range interactions: general results and application to the Coulomb glass

1993

A classical spherical random-field Hamiltonian with long-range (power-law) interactions is investigated by means of the replica theory. Both ferromagnetic and anti-ferromagnetic interactions are considered. The use of continuous variables instead of Ising variables in the spherical version of the model allows one to calculate the free energy exactly. The existence of an equilibrium phase transition is investigated based on the replica-symmetric solution. The results are applied to the Coulomb-glass model of interacting localized electrons in a disordered solid. This model is shown not to have an equilibrium phase transition for spatial dimensions D 4 the model has a phase transition to an o…

PhysicsQuantum phase transitionPhase transitionRandom fieldCondensed matter physicsGeneral Physics and AstronomyStatistical and Nonlinear PhysicsElectronCondensed Matter::Disordered Systems and Neural Networkssymbols.namesakeFerromagnetismsymbolsCoulombIsing modelHamiltonian (quantum mechanics)Mathematical PhysicsJournal of Physics A: Mathematical and General
researchProduct

Linear response in multipolar glasses

1988

We consider the unified hamiltonian with a bilinear coupling, describing the Ising-, vector-, Potts-, octupolar-glass and other glasses [1, 2]. We systematically derive the response to a homogeneous tensor-field as well as the response to an inhomogeneous random tensor-field. We investigate the overlap distribution function and its first and second moment. In all these considerations, we recover the results of the Ising spin glass for sufficiently symmetric multipolar glasses, but we also obtain differnt results for less symmetric glasses.

PhysicsRandom fieldBilinear interpolationSecond moment of areaCondensed Matter PhysicsCondensed Matter::Disordered Systems and Neural NetworksElectronic Optical and Magnetic MaterialsCondensed Matter::Soft Condensed Mattersymbols.namesakeDistribution functionElectric fieldQuantum mechanicssymbolsGeneral Materials ScienceIsing modelStatistical physicsHamiltonian (quantum mechanics)Potts modelZeitschrift f�r Physik B Condensed Matter
researchProduct

Comment on “Hole-Burning Experiments within Glassy Models with Infinite Range Interactions”

2001

Comment on: L.F. Cugliandolo and J.L. Iguain; Phys. Rev. Lett. {\bf 85} 3448 (2000)

PhysicsRange (particle radiation)Condensed matter physicsCondensed Matter (cond-mat)FOS: Physical sciencesGeneral Physics and AstronomyCondensed MatterCondensed Matter::Disordered Systems and Neural Networks530Physical Review Letters
researchProduct

Microscopic Dynamics of Hard Ellipsoids in their Liquid and Glassy Phase

2001

To investigate the influence of orientational degrees of freedom onto the dynamics of molecular systems in its supercooled and glassy regime we have solved numerically the mode-coupling equations for hard ellipsoids of revolution. For a wide range of volume fractions $\phi$ and aspect ratios $x_{0}$ we find an orientational peak in the center of mass spectra $\chi_{000}^{''}(q,\omega)$ and $\phi_{000}^{''} (q,\omega)$ about one decade below a high frequency peak. This orientational peak is the counterpart of a peak appearing in the quadrupolar spectra $\chi_{22m}^{''}(q,\omega)$ and $\phi_{22m}^{''}(q,\omega)$. The latter peak is almost insensitive on $\phi$ for $x_{0}$ close to one, i.e. f…

PhysicsRange (particle radiation)Condensed matter physicsDegrees of freedom (physics and chemistry)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksCondensed Matter - Soft Condensed MatterCondensed Matter PhysicsCoupling (probability)OmegaSpectral lineElectronic Optical and Magnetic MaterialsPhase (matter)Materials ChemistryCeramics and CompositesSoft Condensed Matter (cond-mat.soft)Center of massSupercooling
researchProduct