Search results for "Disulfides"

showing 10 items of 54 documents

Asymmetry and Non-Adiabaticity in Fragmentation of Disulfide Bonds upon Electron Capture

2010

Although it has been generally assumed that electron attachment to disulfide derivatives leads to a systematic and significant activation of the S-S bond, we show, by using [CH(3)SSX] (X = CH(3), NH(2), OH, F) derivatives as model compounds, that this is the case only when the X substituents have low electronegativity. Through the use of MP2, QCI and CASPT2 molecular orbital (MO) methods, we elucidate, for the first time, the mechanisms that lead to unimolecular fragmentation of disulfide derivatives after electron attachment. Our theoretical scrutiny indicates that these mechanisms are more intricate than assumed in previous studies. The most stable products, from a thermodynamic viewpoint…

Models MolecularElectron captureChemistryElectronsAntibonding molecular orbitalAtomic and Molecular Physics and OpticsDissociation (chemistry)ElectronegativityBond lengthCrystallographyDelocalized electronMolecular geometryComputational chemistryThermodynamicsMolecular orbitalDisulfidesPhysical and Theoretical ChemistryChemPhysChem
researchProduct

Combining reactive triblock copolymers with functional cross-linkers: A versatile pathway to disulfide stabilized-polyplex libraries and their applic…

2017

Therapeutic nucleic acids such as pDNA hold great promise for the treatment of multiple diseases. These therapeutic interventions are, however, compromised by the lack of efficient and safe non-viral delivery systems, which guarantee stability during blood circulation together with high transfection efficiency. To provide these desired properties within one system, we propose the use of reactive triblock copolypept(o)ides, which include a stealth-like block for efficient shielding, a hydrophobic block based on reactive disulfides for cross-linking and a cationic block for complexation of pDNA. After the complexation step, bifunctional cross-linkers can be employed to bio-reversibly stabiliz…

Models MolecularLysisEndosomePolymersPharmaceutical ScienceNanotechnology02 engineering and technologyGene delivery010402 general chemistryCleavage (embryo)Transfection01 natural sciencesCell Linechemistry.chemical_compoundMiceVaccines DNAAnimalsHumansDisulfidesBifunctionalCationic polymerizationGene Transfer TechniquesTransfection021001 nanoscience & nanotechnology0104 chemical sciencesCross-Linking ReagentschemistryBiophysicsNucleic acid0210 nano-technologyPlasmidsJournal of controlled release : official journal of the Controlled Release Society
researchProduct

Simultaneous Freezing of Chirality and In−Out Conformation of a Macropentacyclic Cryptand by Protonation

2004

Compound 1, a cryptand-derived macropentacycle, is a flexible molecule that encompasses many conformations (symmetrical, unsymmetrical, and chiral ones) depending on the observation temperature (VT 1H NMR). Selective monoprotonation of this molecule leads to a totally unsymmetrical, rigidly chiral species in solution (1H NMR). Helical chirality and in-out conformation of monoprotonated 1 are observed in the solid state by X-ray diffraction analysis, as well as the proton location. The latter is bound to the endo bridgehead nitrogen atom and involved in hydrogen-bonding interactions with the three closest sulfurs. Significant induction of chirality is triggered by reaction of 1 with the opti…

Models MolecularMagnetic Resonance SpectroscopyProtonChemistryStereochemistryCryptandMolecular ConformationDiastereomerStereoisomerismProtonationGeneral ChemistryNuclear magnetic resonance spectroscopyCrystallography X-RayBiochemistryCatalysisColloid and Surface ChemistryCrown EthersBenzene DerivativesProton NMRMoleculeDisulfidesAminesProtonsChirality (chemistry)Journal of the American Chemical Society
researchProduct

Mutational analysis of disulfide bonds in the trypsin-reactive subdomain of a Bowman-Birk-type inhibitor of trypsin and chymotrypsin--cooperative ver…

1998

It is widely believed that protein folding is a hierarchical process proceeding from secondary structure via subdomains and domains towards the complete tertiary structure. Accordingly, protein subdomains should behave as independent folding units. However, this prediction would underestimate the well-established structural significance of tertiary context and domain interfaces in proteins. The principal objective of this work was to distinguish between autonomous and cooperative refolding of protein subdomains by means of mutational analysis. The double-headed Bowman-Birk inhibitor of trypsin and chymotrypsin of known crystal structure was selected for study. The relative orientation of th…

Models MolecularProtein FoldingProtein ConformationTrypsin inhibitorMolecular Sequence DataContext (language use)BiochemistryProtein Structure SecondaryProtein structureDrug StabilityEscherichia coliChymotrypsinTrypsinAmino Acid SequenceDisulfidesCloning MolecularProtein secondary structureTrypsin Inhibitor Bowman-Birk SoybeanChymotrypsinbiologyBase SequenceChemistryGenetic VariationDNAProtein tertiary structureRecombinant ProteinsProtein Structure TertiaryFolding (chemistry)Crystallographybiology.proteinBiophysicsMutagenesis Site-DirectedProtein foldingEuropean journal of biochemistry
researchProduct

cDNA Cloning and Functional Expression of Jerdostatin, a Novel RTS-disintegrin from Trimeresurus jerdonii and a Specific Antagonist of the α1β1 Integ…

2005

Jerdostatin represents a novel RTS-containing short disintegrin cloned by reverse transcriptase-PCR from the venom gland mRNA of the Chinese Jerdons pit viper Trimeresurus jerdonii. The jerdostatins precursor cDNA contained a 333-bp open reading frame encoding a signal peptide, a pre-peptide, and a 43-amino acid disintegrin domain, whose amino acid sequence displayed 80% identity with that of the KTS-disintegrins obtustatin and viperistatin. The jerdostatin cDNA structure represents the first complete open reading frame of a short disintegrin and points to the emergence of jerdostatin from a short-coding gene. The different residues between jerdostatin and obtustatin/viperistatin are segreg…

Models MolecularSignal peptideProtein FoldingDNA ComplementaryMagnetic Resonance SpectroscopyProtein ConformationDisintegrinsMolecular Sequence DataIntegrinMutantGene ExpressionPeptide MappingBiochemistryIntegrin alpha1beta1Open Reading FramesExocrine GlandsComplementary DNACrotalid VenomsDisintegrinAnimalsTrimeresurusTrypsinAmino Acid SequenceCysteineDisulfidesCloning MolecularMolecular BiologyPeptide sequenceMessenger RNABase SequencebiologyCell BiologyMolecular biologyRecombinant ProteinsOpen reading frameMutagenesis Site-Directedbiology.proteinJournal of Biological Chemistry
researchProduct

The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin.

2003

Neuroglobin and cytoglobin reversibly bind oxygen in competition with the distal histidine, and the observed oxygen affinity therefore depends on the properties of both ligands. In the absence of an external ligand, the iron atom of these globins is hexacoordinated. There are three cysteine residues in human neuroglobin; those at positions CD7 and D5 are sufficiently close to form an internal disulfide bond. Both cysteine residues in cytoglobin, although localized in other positions than in human neuroglobin, may form a disulfide bond as well. The existence and position of these disulfide bonds was demonstrated by mass spectrometry and thiol accessibility studies. Mutation of the cysteines …

Models MolecularSpectrometry Mass Electrospray IonizationStereochemistryNeuroglobinNerve Tissue ProteinsLigandsBiochemistryRedoxHumansHistidineCysteineDisulfidesGlobinMolecular BiologyHistidineChemistryCytoglobinCytoglobinCell BiologyLigand (biochemistry)Recombinant ProteinsGlobinsOxygenKineticsNeuroglobinOxidation-ReductionOxygen bindingProtein BindingCysteine
researchProduct

Controlling quaternary structure assembly: subunit interface engineering and crystal structure of dual chain avidin.

2006

Dual chain avidin (dcAvd) is an engineered avidin form, in which two circularly permuted chicken avidin monomers are fused into one polypeptide chain. DcAvd can theoretically form two different pseudotetrameric quaternary assemblies because of symmetry at the monomer-monomer interfaces. Here, our aim was to control the assembly of the quaternary structure of dcAvd. We introduced the mutation I117C into one of the circularly permuted domains of dcAvd and scanned residues along the 1-3 subunit interface of the other domain. Interestingly, V115H resulted in a single, disulfide locked quaternary assembly of dcAvd, whereas I117H could not guide the oligomerisation process even though it stabilis…

Models MolecularStereochemistryProtein subunitBiotinGene ExpressionCrystal structureCrystallography X-RayLigandsProtein EngineeringProtein–protein interactionchemistry.chemical_compoundBiotinStructural BiologyAnimalsDisulfidesProtein Structure QuaternaryMolecular BiologyChromatography High Pressure LiquidbiologyProtein engineeringHydrogen-Ion ConcentrationAvidinCrystallographyProtein SubunitsMonomerchemistryMutationbiology.proteinChromatography GelThermodynamicsProtein quaternary structureChickensAvidinJournal of molecular biology
researchProduct

The refined structure of functional unit h of keyhole limpet hemocyanin (KLH1-h) reveals disulfide bridges

2011

Hemocyanins are multimeric oxygen-transport proteins in the hemolymph of many arthropods and mollusks. The overall molecular architecture of arthropod and molluscan hemocyanin is very different, although they possess a similar binuclear type 3 copper center to bind oxygen in a side-on conformation. Gastropod hemocyanin is a 35 nm cylindrical didecamer (2 × 10-mer) based on a 400 kDa subunit. The latter is subdivided into eight paralogous “functional units” (FU-a to FU-h), each with an active site. FU-a to FU-f contribute to the cylinder wall, whereas FU-g and FU-h form the internal collar complex. Atomic structures of FU-e and FU-g, and a 9 A cryoEM structure of the 8 MDa didecamer are avai…

Models Molecularchemistry.chemical_classificationbiologyCopper proteinmedicine.medical_treatmentProtein subunitClinical BiochemistryActive siteHemocyaninCell BiologyBiochemistryAmino acidCrystallographychemistryHemocyaninsHemolymphGeneticsbiology.proteinmedicineDisulfidesMolecular BiologyKeyhole limpet hemocyaninOxygen bindingIUBMB Life
researchProduct

The protease domain of procollagen C-proteinase (BMP1) lacks substrate selectivity, which is conferred by non-proteolytic domains.

2007

Abstract Procollagen C-proteinase (PCP) removes the C-terminal pro-peptides of procollagens and also processes other matrix proteins. The major splice form of the PCP is termed BMP1 (bone morphogenetic protein 1). Active BMP1 is composed of an astacin-like protease domain, three CUB (complement, sea urchin Uegf, BMP1) domains and one EGF-like domain. Here we compare the recombinant human full-length BMP1 with its isolated proteolytic domain to further unravel the functional influence of the CUB and EGF domains. We show that the protease domain alone cleaves truncated procollagen VII within the short telopeptide region into fragments of similar size as the full-length enzyme does. However, u…

Protein FoldingCollagen Type VIIDNA Complementarymedicine.medical_treatmentClinical BiochemistryAmino Acid MotifsGene ExpressionGlutamic AcidBiochemistryBone morphogenetic protein 1Mass SpectrometryBone Morphogenetic Protein 1Cell LineSubstrate SpecificityProtein structuremedicineEscherichia coliAnimalsHumansCysteineDisulfidesMolecular BiologyInclusion BodiesMetalloproteinaseProteasebiologyChemistryMetalloendopeptidasesRecombinant ProteinsProtein Structure TertiaryFibronectinProcollagen peptidaseDrosophila melanogasterBiochemistryBone Morphogenetic ProteinsMutationbiology.proteinProtein foldingAstacinBiological chemistry
researchProduct

Disulfide stress: a novel type of oxidative stress in acute pancreatitis.

2013

Glutathione oxidation and protein glutathionylation are considered hallmarks of oxidative stress in cells because they reflect thiol redox status in proteins. Our aims were to analyze the redox status of thiols and to identify mixed disulfides and targets of redox signaling in pancreas in experimental acute pancreatitis as a model of acute inflammation associated with glutathione depletion. Glutathione depletion in pancreas in acute pancreatitis is not associated with any increase in oxidized glutathione levels or protein glutathionylation. Cystine and homocystine levels as well as protein cysteinylation and γ-glutamyl cysteinylation markedly rose in pancreas after induction of pancreatitis…

Protein FoldingFree RadicalsCystineProtein Disulfide-IsomerasesProtein glutathionylationmedicine.disease_causeBiochemistrychemistry.chemical_compoundStress PhysiologicalPhysiology (medical)medicineAnimalsCysteineDisulfidesSulfhydryl CompoundsProtein disulfide-isomeraseGlutathione DisulfideProtein phosphatase 2GlutathioneKEAP1Oxidative StressBiochemistrychemistryPancreatitisOxidation-ReductionOxidative stressCysteineFree radical biologymedicine
researchProduct