Search results for "Dolo"
showing 10 items of 4274 documents
Visual tracking with omnidirectional cameras: an efficient approach
2011
International audience; An effective technique for applying visual tracking algorithms to omni- directional image sequences is presented. The method is based on a spherical image representation which allows taking into account the distortions and nonlinear resolution of omnidirectional images. Experimental results show that both deterministic and probabilistic tracking methods can effectively be adapted in order to robustly track an object with an omnidirectional camera.
Static and Dynamic Objects Analysis as a 3D Vector Field
2017
International audience; In the context of scene modelling, understanding, and landmark-based robot navigation, the knowledge of static scene parts and moving objects with their motion behaviours plays a vital role. We present a complete framework to detect and extract the moving objects to reconstruct a high quality static map. For a moving 3D camera setup, we propose a novel 3D Flow Field Analysis approach which accurately detects the moving objects using only 3D point cloud information. Further, we introduce a Sparse Flow Clustering approach to effectively and robustly group the motion flow vectors. Experiments show that the proposed Flow Field Analysis algorithm and Sparse Flow Clusterin…
Homography based egomotion estimation with a common direction
2017
International audience; In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.
Adaptive Control of Soft Robots Based on an Enhanced 3D Augmented Rigid Robot Matching
2021
Despite having proven successful in generating precise motions under dynamic conditions in highly deformable soft-bodied robots, model based techniques are also prone to robustness issues connected to the intrinsic uncertain nature of the dynamics of these systems. This letter aims at tackling this challenge, by extending the augmented rigid robot formulation to a stable representation of three dimensional motions of soft robots, under Piecewise Constant Curvature hypothesis. In turn, the equivalence between soft-bodied and rigid robots permits to derive effective adaptive controllers for soft-bodied robots, achieving perfect posture regulation under considerable errors in the knowledge of …
Dynamic Modeling, Energy Analysis, and Path Planning of Spherical Robots on Uneven Terrains
2020
Spherical robots are generally comprised of a spherical shell and an internal actuation unit. These robots have a variety of applications ranging from search and rescue to agriculture. Although one of the main advantages of spherical robots is their capability to operate on uneven surfaces, energy analysis and path planning of such systems have been studied only for flat terrains. This work introduces a novel approach to evaluate the dynamic equations, energy consumption, and separation analysis of these robots rolling on uneven terrains. The presented dynamics modeling, separation analysis, and energy analysis allow us to implement path planning algorithms to find an optimal path. One of t…
Predictive Model Markup Language (PMML) Representation of Bayesian Networks: An Application in Manufacturing
2018
International audience; Bayesian networks (BNs) represent a promising approach for the aggregation of multiple uncertainty sources in manufacturing networks and other engineering systems for the purposes of uncertainty quantification, risk analysis, and quality control. A standardized representation for BN models will aid in their communication and exchange across the web. This article presents an extension to the predictive model markup language (PMML) standard for the representation of a BN, which may consist of discrete variables, continuous variables, or their combination. The PMML standard is based on extensible markup language (XML) and used for the representation of analytical models…
A Pareto optimal design approach for simultaneous control of thinning and springback in stamping processes
2009
One of the most relevant research issues in automotive field is focused on the reduction of stamped parts weight also increasing their strength. In this way, a strong research effort is developed on high strength steels which are widely utilized and they require a proper springback control. Springback reduction in sheet metal forming is a typical goal to be pursued which is conflicting with thinning reduction for instance. Thus, such problems can be considered as multi-objective ones characterized by conflicting objectives. What is more, nowadays, a great interest would be focused on the availability of a cluster of possible optimal solutions instead of a single one, particularly in an indu…
Central catadioptric image processing with geodesic metric
2011
International audience; Because of the distortions produced by the insertion of a mirror, catadioptric images cannot be processed similarly to classical perspective images. Now, although the equivalence between such images and spherical images is well known, the use of spherical harmonic analysis often leads to image processing methods which are more difficult to implement. In this paper, we propose to define catadioptric image processing from the geodesic metric on the unitary sphere. We show that this definition allows to adapt very simply classical image processing methods. We focus more particularly on image gradient estimation, interest point detection, and matching. More generally, th…
A Geometrical Approach for Vision Based Attitude and Altitude Estimation for UAVs in Dark Environments
2012
International audience; This paper presents a single camera and laser system dedicated to the realtime estimation of attitude and altitude for unmanned aerial vehicles (UAV) under low illumination conditions to dark environments. The fisheye camera allows to cover a large field of view (FOV). The approach, close to structured light systems, uses the geometrical information obtained by the projection of a laser circle onto the ground plane and perceived by the camera. We propose some experiments based on simulated data and real sequences. The results show good agreement with the ground truth values from the commercial sensors in terms of its accuracy and correctness. The results also prove i…
Three-Dimensional Integral-Imaging Display From Calibrated and Depth-Hole Filtered Kinect Information
2016
We exploit the Kinect capacity of picking up a dense depth map, to display static three-dimensional (3D) images with full parallax. This is done by using the IR and RGB camera of the Kinect. From the depth map and RGB information, we are able to obtain an integral image after projecting the information through a virtual pinhole array. The integral image is displayed on our integral-imaging monitor, which provides the observer with horizontal and vertical perspectives of big 3D scenes. But, due to the Kinect depth-acquisition procedure, many depthless regions appear in the captured depth map. These holes spread to the generated integral image, reducing its quality. To solve this drawback we …