Search results for "Droplets"
showing 10 items of 44 documents
RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy
2014
Macroautophagy is a degradative pathway that sequesters and transports cytosolic cargo in autophagosomes to lysosomes, and its deterioration affects intracellular proteostasis. Membrane dynamics accompanying autophagy are mostly elusive and depend on trafficking processes. RAB GTPase activating proteins (RABGAPs) are important factors for the coordination of cellular vesicle transport systems, and several TBC (TRE2-BUB2-CDC16) domain-containing RABGAPs are associated with autophagy. Employing C. elegans and human primary fibroblasts, we show that RAB3GAP1 and RAB3GAP2, which are components of the TBC domain-free RAB3GAP complex, influence protein aggregation and affect autophagy at basal an…
Age‐related ultrastructural changes of the basement membrane in the mouse blood‐brain barrier
2018
Abstract The blood‐brain barrier (BBB) is essential for a functional neurovascular unit. Most studies focused on the cells forming the BBB, but very few studied the basement membrane (BM) of brain capillaries in ageing. We used transmission electron microscopy and electron tomography to investigate the BM of the BBB in ageing C57BL/6J mice. The thickness of the BM of the BBB from 24‐month‐old mice was double as compared with that of 6‐month‐old mice (107 nm vs 56 nm). The aged BBB showed lipid droplets gathering within the BM which further increased its thickness (up to 572 nm) and altered its structure. The lipids appeared to accumulate toward the glial side of the BM. Electron tomography …
Correlative Raman-Electron-Light (CREL) Microscopy Analysis of Lipid Droplets in Melanoma Cancer Stem Cells.
2022
Among all neoplasms, melanoma is characterized by a very high percentage of cancer stem cells (CSCs). Several markers have been proposed for their identification, and lipid droplets (LDs) are among them. Different techniques are used for their characterization such as mass spectrometry, imaging techniques, and vibrational spectroscopies. Some emerging experimental approaches for the study of LDs are represented by correlative light–electron microscopy and by correlative Raman imaging–scanning electron microscopy (SEM). Based on these scientific approaches, we developed a novel methodology (CREL) by combining Raman micro-spectroscopy, confocal fluorescence microscopy, and SEM coupled with an…
Effects of Long-Term Physical Activity and BCAA Availability on the Subcellular Associations between Intramyocellular Lipids, Perilipins and PGC-1&al…
2023
Cellular skeletal muscle lipid metabolism is of paramount importance for metabolic health, specifically through its connection to branched-chain amino acids (BCAA) metabolism and through its modulation by exercise. In this study, we aimed at better understanding intramyocellular lipids (IMCL) and their related key proteins in response to physical activity and BCAA deprivation. By means of confocal microscopy, we examined IMCL and the lipid droplet coating proteins PLIN2 and PLIN5 in human twin pairs discordant for physical activity. Additionally, in order to study IMCLs, PLINs and their association to peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in cytosolic…
PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich Ataxia
2020
Friedreich ataxia (FRDA), the most common autosomal recessive ataxia, is characterized by degeneration of the large sensory neurons and spinocerebellar tracts, cardiomyopathy, and increased incidence in diabetes. The underlying pathophysiological mechanism of FRDA, driven by a significantly decreased expression of frataxin (FXN), involves increased oxidative stress, reduced activity of enzymes containing iron‑sulfur clus-ters (ISC), defective energy production, calcium dyshomeostasis, and impaired mitochondrial biogenesis, leading to mitochondrial dysfunction. The peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcriptional factor playing a key role in mito…
Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack.
2016
International audience; Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cyto…
The Elovl5 enzyme in breast cancer : regulation of cancer cell proliferation and metastasis
2021
Breast cancer is the most diagnosed cancer and the leading cause of cancer death in women. The 5-year relative survival rate is less than 30% for metastatic breast cancer and metastases account for more than 75% of breast cancer deaths. Fatty acid metabolism is altered in cancer and contributes to tumor progression and metastasis. Here, we were interested in Elongation of very long chain fatty acids protein 5 (Elovl5) which catalyzes the elongation of long-chain fatty acids. We observed that the tumors from patients with a breast cancer had a lower expression of Elovl5 than paired normal breast tissue. However, low expression of Elovl5 is associated with a worse prognosis in breast cancer p…
Acid Catalysis with Alkane/Water Microdroplets in Ionic Liquids
2021
Ionic liquids are composed of an organic cation and a highly delocalized perfluorinated anion, which remain tight to each other and neutral across the extended liquid framework. Here we show that n-alkanes in millimolar amounts enable a sufficient ion charge separation to release the innate acidity of the ionic liquid and catalyze the industrially relevant alkylation of phenol, after generating homogeneous, self-stabilized, and surfactant-free microdroplets (1–5 μm). This extremely mild and simple protocol circumvents any external additive or potential ionic liquid degradation and can be extended to water, which spontaneously generates microdroplets (ca. 3 μm) and catalyzes Brönsted rather …
Pseudo-Planar Organic Heterojunctions by Sequential Printing of Quasi-Miscible Inks
2021
This work deals with the interfacial mixing mechanism of picoliter (pL)-scale droplets produced by sequential inkjet printing of organic-based inks onto ITO/PET surfaces at a moderately high Weber number (~101). Differently from solution dispensing processes at a high Bond number such as spin coating, the deposition by inkjet printing is strictly controlled by droplet velocity, ink viscosity, and surface tension. In particular, this study considers the interfacial mixing of droplets containing the most investigated donor/acceptor couple for organic solar cells, i.e., poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl-C61-butyric acid methyl ester (PCBM), showing how low-viscosity and low-surfac…
RAB18 Loss Interferes With Lipid Droplet Catabolism and Provokes Autophagy Network Adaptations
2020
Autophagy is dependent on appropriate lipid supply for autophagosome formation. The regulation of lipid acquisition and the autophagy network response to lipid-limiting conditions are mostly elusive. Here, we show that the knockout of the RAB GTPase RAB18 interferes with lipid droplet catabolism, causing an impaired fatty acid release. The resulting reduced lipid-droplet-derived lipid availability influences autophagy and provokes adaptive modifications of the autophagy network. These adjustments include increased expression and phosphorylation of ATG2B as well as augmented formation of the ATG12-ATG5 conjugate. Moreover, ATG9A shows an enhanced phosphorylation at amino acid residues tyrosi…