Search results for "Dynamic"

showing 10 items of 12329 documents

Compensation of Nonlinear Torsion in Flexible Joint Robots: Comparison of Two Approaches

2015

Flexible joint robots, in particularly those which are equipped with harmonic-drive gears, can feature elasticities with hysteresis. Under heavy loads and large joint torques the hysteresis lost motion can lead to significant errors of tracking and positioning of the robotic links. In this paper, two approaches for compensating the nonlinear joint torsion with hysteresis are described and compared with each other. Both methods assume the measured signals available only on the motor side of joint transmissions. The first approach assumes a rigid-link manipulator model and transforms the desired link trajectory into that of the motor drives by using the inverse dynamics and inverse hysteresis…

0209 industrial biotechnologyComputer science020208 electrical & electronic engineeringTorsion (mechanics)Systems and Control (eess.SY)02 engineering and technologyPlanar manipulatorInverse dynamicsNonlinear system020901 industrial engineering & automationControl and Systems EngineeringControl theoryFOS: Electrical engineering electronic engineering information engineering0202 electrical engineering electronic engineering information engineeringTrajectoryComputer Science - Systems and ControlRobotTorqueElectrical and Electronic EngineeringManipulatorIEEE Transactions on Industrial Electronics
researchProduct

Minimal-model for robust control design of large-scale hydraulic machines

2018

Hydraulic machines are in use where the large forces, at relatively low velocities, are required by varying loads and often hazardous and hard-to-reach environments, like e.g. offshore, mining, forestry, cargo logistics, and others industries. Cranes and excavators equipped with multiple hydraulic cylinders are typical examples for that. For design of the robust feedback controls of hydraulic cylinders, already installed into large-scale machines, there is a general lack of reliable dynamic models. Also the suitable and feasible identification techniques, especially in frequency domain, yield limited. This paper pro­poses a minimal-modeling approach for determining the most relevant open-lo…

0209 industrial biotechnologyComputer scienceComputerApplications_COMPUTERSINOTHERSYSTEMS02 engineering and technologySystem dynamicsLoaderHydraulic cylinderExcavator020901 industrial engineering & automation020401 chemical engineeringControl theoryControl systemFrequency domain0204 chemical engineeringHydraulic machineryRobust control2018 IEEE 15th International Workshop on Advanced Motion Control (AMC)
researchProduct

On Stability of Virtual Torsion Sensor for Control of Flexible Robotic Joints with Hysteresis

2019

Author's accepted manuscript (postprint). This article has been published in a revised form in Robotica, http://doi.org/10.1017/S0263574719001358. This version is free to view and download for private research and study only. Not for re-distribution or re-use. © 2019 Cambridge University Press. Available from 25/03/2020. Aim of the virtual torsion sensor (VTS) is in observing the nonlinear deflection in the flexible joints of robotic manipulators and, by its use, improving positioning control of the joint load. This model-based approach utilizes the motor-side sensing only and, therefore, replaces the load-side encoders at nearly zero hardware costs. For being applied in the closed control …

0209 industrial biotechnologyComputer scienceGeneral Mathematics020208 electrical & electronic engineeringPassivityTorsion (mechanics)02 engineering and technologyComputer Science ApplicationsRobot controlSystem dynamicsNonlinear systemVDP::Teknologi: 500020901 industrial engineering & automationControl and Systems EngineeringControl theoryControl systemJoint stiffness0202 electrical engineering electronic engineering information engineeringmedicinemedicine.symptomEncoderSoftware
researchProduct

Smart sensing and adaptive reasoning for enabling industrial robots with interactive human-robot capabilities in dynamic environments — a case study

2019

Traditional industry is seeing an increasing demand for more autonomous and flexible manufacturing in unstructured settings, a shift away from the fixed, isolated workspaces where robots perform predefined actions repetitively. This work presents a case study in which a robotic manipulator, namely a KUKA KR90 R3100, is provided with smart sensing capabilities such as vision and adaptive reasoning for real-time collision avoidance and online path planning in dynamically-changing environments. A machine vision module based on low-cost cameras and color detection in the hue, saturation, value (HSV) space is developed to make the robot aware of its changing environment. Therefore, this vision a…

0209 industrial biotechnologyComputer scienceMachine visionTKReal-time computingRobot manipulator02 engineering and technologyWorkspaceAdaptive Reasoninglcsh:Chemical technologyBiochemistryHuman–robot interactionArticleAnalytical ChemistrySettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchinehuman-robot interaction020901 industrial engineering & automation0202 electrical engineering electronic engineering information engineeringlcsh:TP1-1185Motion planningElectrical and Electronic EngineeringInstrumentationpath planningCollision avoidancerobot controlsmart sensingAdaptive reasoningdynamic environmentsAtomic and Molecular Physics and OpticsRobot control:Engineering::Mechanical engineering [DRNTU]ObstacleDynamic EnvironmentsRobot020201 artificial intelligence & image processingadaptive reasoning
researchProduct

Dynamic Modeling, Energy Analysis, and Path Planning of Spherical Robots on Uneven Terrains

2020

Spherical robots are generally comprised of a spherical shell and an internal actuation unit. These robots have a variety of applications ranging from search and rescue to agriculture. Although one of the main advantages of spherical robots is their capability to operate on uneven surfaces, energy analysis and path planning of such systems have been studied only for flat terrains. This work introduces a novel approach to evaluate the dynamic equations, energy consumption, and separation analysis of these robots rolling on uneven terrains. The presented dynamics modeling, separation analysis, and energy analysis allow us to implement path planning algorithms to find an optimal path. One of t…

0209 industrial biotechnologyControl and OptimizationComputer science0211 other engineering and technologiesBiomedical EngineeringTerrain02 engineering and technologySpherical shellComputer Science::RoboticsVehicle dynamics020901 industrial engineering & automationArtificial IntelligenceMotion planningSearch and rescueComputingMethodologies_COMPUTERGRAPHICS021106 design practice & managementMechanical EngineeringPropellerControl engineeringEnergy consumptionComputer Science ApplicationsSystem dynamicsHuman-Computer InteractionControl and Systems EngineeringPath (graph theory)RobotComputer Vision and Pattern RecognitionIEEE Robotics and Automation Letters
researchProduct

Energy-based fluid–structure model of the vocal folds

2020

AbstractLumped elements models of vocal folds are relevant research tools that can enhance the understanding of the pathophysiology of many voice disorders. In this paper, we use the port-Hamiltonian framework to obtain an energy-based model for the fluid–structure interactions between the vocal folds and the airflow in the glottis. The vocal fold behavior is represented by a three-mass model and the airflow is described as a fluid with irrotational flow. The proposed approach allows to go beyond the usual quasi-steady one-dimensional flow assumption in lumped mass models. The simulation results show that the proposed energy-based model successfully reproduces the oscillations of the vocal …

0209 industrial biotechnologyControl and OptimizationGlottisComputer scienceApplied MathematicsAirflow02 engineering and technologyMechanicsFold (geology)ArticlesConservative vector field01 natural sciencesCompressible flowPhysics::Fluid Dynamics020901 industrial engineering & automationmedicine.anatomical_structureFlow (mathematics)Control and Systems EngineeringComputer Science::SoundVocal folds0103 physical sciencesmedicine010301 acousticsEnergy (signal processing)
researchProduct

TIME-MINIMAL CONTROL OF DISSIPATIVE TWO-LEVEL QUANTUM SYSTEMS: THE INTEGRABLE CASE

2009

The objective of this article is to apply recent developments in geometric optimal control to analyze the time minimum control problem of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. We focus our analysis on the case where the extremal Hamiltonian is integrable.

0209 industrial biotechnologyControl and OptimizationIntegrable systemQuantum dynamics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]FOS: Physical sciences02 engineering and technology01 natural sciences020901 industrial engineering & automation[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]0103 physical sciencesQuantum operation[MATH.MATH-MP] Mathematics [math]/Mathematical Physics [math-ph]010306 general physicsMathematical PhysicsMathematicsMathematical physicsLindblad equationApplied MathematicsMathematical analysis[ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph]Mathematical Physics (math-ph)[PHYS.MPHY] Physics [physics]/Mathematical Physics [math-ph]16. Peace & justice49K15 70Q05Quantum processDissipative systemQuantum algorithm[ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph]Hamiltonian (control theory)
researchProduct

Robust Composite Nonlinear Feedback Path-Following Control for Independently Actuated Autonomous Vehicles With Differential Steering

2016

This paper investigates utilizing the front-wheel differential drive-assisted steering (DDAS) to achieve the path-following control for independently actuated (IA) electric autonomous ground vehicles (AGVs), in the case of the complete failure of the active front-wheel steering system. DDAS, which is generated by the differential torque between the left and right wheels of IA electric vehicles, can be utilized to actuate the front wheels as the sole steering power when the regular steering system fails, and thus avoids dangerous consequences for AGVs. As an inherent emergency measure and an active safety control method for the steering system of electric vehicles, DDAS strategy is a valuabl…

0209 industrial biotechnologyEngineeringObserver (quantum physics)business.industryActive safetyEnergy Engineering and Power Technology020302 automobile design & engineeringTransportationControl engineering02 engineering and technologyActive steeringPower (physics)Vehicle dynamicsNonlinear system020901 industrial engineering & automation0203 mechanical engineeringControl theoryAutomotive EngineeringTorqueElectrical and Electronic EngineeringbusinessIEEE Transactions on Transportation Electrification
researchProduct

Experimental framework of traveling trolley with swinging load for hybrid motion control

2018

A novel experimental framework of the traveling trolley with swinging load is proposed. The system is designed as a controlled moving cart with pendulum for investigation of the hybrid motion control methods, involving the discrete sensors and impulsive event-based state observations and control actions. A mechatronic approach of principal system design, modeling, and identification are provided together with a motion control of the cart and simple event-based control of a-priori unknown final position. The coupled motion dynamics is analyzed and evaluated by using the discrete sensors, along with the control results.

0209 industrial biotechnologyEvent (computing)Computer scienceElementary eventDynamics (mechanics)Pendulum02 engineering and technologyMechatronicsMotion control01 natural sciences020901 industrial engineering & automationPosition (vector)Control theory0103 physical sciencesSystems design010301 acoustics2018 IEEE 15th International Workshop on Advanced Motion Control (AMC)
researchProduct

Frequency-domain experimental setup for mechatronic and suspension system components

2021

This paper presents a frequency-domain experimental setup for modal analysis of mechatronic and suspension system components. Design, instrumentation and dynamic behavior of the one degree-of-freedom (DOF) system, capable of providing both, periodic and application-specific, excitation forces is described. The excitation is realized by an electromagnetic modal shaker with additional assembly and interface components designed and instrumented for frequency -domain analysis of vertical dynamics. Frequency response functions (FRFs) of the implemented system are experimentally measured and the associated basic model parameters are calculated, correspondingly identified. Accurate fit between the…

0209 industrial biotechnologyFrequency responseComputer scienceModal analysisAcousticsAutomatic frequency control02 engineering and technologyVehicle dynamicsMechanical system020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringFrequency domainDomain analysisShaker
researchProduct