Search results for "Dynamic"
showing 10 items of 12329 documents
Chemistry, Pharmacodynamics, and Pharmacokinetics of NSAIDs
2016
Numerous chemically different entities are clustered under the label of nonsteroidal anti-inflammatory drugs (NSAIDs). They share the ability to inhibit prostanoid synthesis by blocking the activity of the cyclooxygenase enzymes and, as a consequence, to exert anti-inflammatory, analgesic, and antipyretic effects. On the other hand, by hindering the housekeeping roles of prostaglandins, they also deteriorate the gastrointestinal mucosal barrier and the renal and endothelial hemodynamic regulation. The present chapter compiles available pharmacokinetic and pharmacodynamic data that may help to understand the different therapeutic profiles reported for particular agents.
Preliminary biomarker and pharmacodynamic data from a phase I study of single-agent bispecific antibody T-cell engager GBR 1302 in subjects with HER2…
2018
69 Background: HER2 is overexpressed in many solid tumors and is a validated therapeutic target. GBR 1302 is a HER2xCD3 bispecific antibody engineered (using Glenmark’s BEAT® platform) to direct T-cells to HER2-expressing tumor cells. GBR1302-101 (NCT02829372) is an ongoing, multicenter, open-label, first-in-human study of GBR 1302 in subjects with HER2-positive cancers to evaluate the safety, tolerability, and preliminary efficacy of GBR 1302, and to elucidate the mechanism(s) by which it redirects T-cells to tumor and enhances cytolytic activity of cytotoxic T-cells. Methods: Adults with progressive HER2-positive solid tumors with no available standard or curative treatment receive intra…
Free-energy studies reveal a possible mechanism for oxidation-dependent inhibition of MGL
2016
AbstractThe function of monoacylglycerol lipase (MGL), a key actor in the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2AG), is tightly controlled by the cell’s redox state: oxidative signals such as hydrogen peroxide suppress MGL activity in a reversible manner through sulfenylation of the peroxidatic cysteines, C201 and C208. Here, using as a starting point the crystal structures of human MGL (hMGL), we present evidence from molecular dynamics and metadynamics simulations along with high-resolution mass spectrometry studies indicating that sulfenylation of C201 and C208 alters the conformational equilibrium of the membrane-associated lid domain of MGL to favo…
Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study
2018
Single-molecule Forster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between +/- 0.02 and +/- 0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and…
Wavelength selection of rippling patterns in myxobacteria
2016
Rippling patterns of myxobacteria appear in starving colonies before they aggregate to form fruiting bodies. These periodic traveling cell density waves arise from the coordination of individual cell reversals, resulting from an internal clock regulating them, and from contact signaling during bacterial collisions. Here we revisit a mathematical model of rippling in myxobacteria due to Igoshin et al.\ [Proc. Natl. Acad. Sci. USA {\bf 98}, 14913 (2001) and Phys. Rev. E {\bf 70}, 041911 (2004)]. Bacteria in this model are phase oscillators with an extra internal phase through which they are coupled to a mean-field of oppositely moving bacteria. Previously, patterns for this model were obtaine…
An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge
2018
Molecular dynamics (MD) has become increasingly popular due to the development of hardware and software solutions and the improvement in algorithms, which allowed researchers to scale up calculations in order to speed them up. MD simulations are usually used to address protein folding issues or protein-ligand complex stability through energy profile analysis over time. In recent years, the development of new tools able to deeply explore a potential energy surface (PES) has allowed researchers to focus on the dynamic nature of the binding recognition process and binding-induced protein conformational changes. Moreover, modern approaches have been demonstrated to be effective and reliable in …
Physical mechanisms of micro- and nanodomain formation in multicomponent lipid membranes.
2016
This article summarizes a variety of physical mechanisms proposed in the literature, which can generate micro- and nanodomains in multicomponent lipid bilayers and biomembranes. It mainly focusses on lipid-driven mechanisms that do not involve direct protein-protein interactions. Specifically, it considers (i) equilibrium mechanisms based on lipid-lipid phase separation such as critical cluster formation close to critical points, and multiple domain formation in curved geometries, (ii) equilibrium mechanisms that stabilize two-dimensional microemulsions, such as the effect of linactants and the effect of curvature-composition coupling in bilayers and monolayers, and (iii) non-equilibrium me…
Intramolecular structural parameters are key modulators of the gel-liquid transition in coarse grained simulations of DPPC and DOPC lipid bilayers
2018
The capability of coarse-grained models based on the MARTINI mapping to reproduce the gel-liquid phase transition in saturated and unsaturated model lipids was investigated. We found that the model is able to reproduce a lower critical temperature for 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with respect to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Nonetheless, the appearance of a gel phase for DOPC is strictly dependent on the intramolecular parameters chosen to model its molecular structure. In particular, we show that the bending angle at the coarse-grained bead corresponding to the unsaturated carbon-carbon bond acts as an order parameter determining the temperature of …
Stochastic sampling effects favor manual over digital contact tracing.
2020
Isolation of symptomatic individuals, tracing and testing of their nonsymptomatic contacts are fundamental strategies for mitigating the current COVID-19 pandemic. The breaking of contagion chains relies on two complementary strategies: manual reconstruction of contacts based on interviews and a digital (app-based) privacy-preserving contact tracing. We compare their effectiveness using model parameters tailored to describe SARS-CoV-2 diffusion within the activity-driven model, a general empirically validated framework for network dynamics. We show that, even for equal probability of tracing a contact, manual tracing robustly performs better than the digital protocol, also taking into accou…
2016
The growth of next-generation sequencing (NGS) datasets poses a challenge to the alignment of reads to reference genomes in terms of alignment quality and execution speed. Some available aligners have been shown to obtain high quality mappings at the expense of long execution times. Finding fast yet accurate software solutions is of high importance to research, since availability and size of NGS datasets continue to increase. In this work we present an efficient parallelization approach for NGS short-read alignment on multi-core clusters. Our approach takes advantage of a distributed shared memory programming model based on the new UPC++ language. Experimental results using the CUSHAW3 alig…