Search results for "Dynamic"

showing 10 items of 12329 documents

Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach

2018

Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …

0301 basic medicineProteaseschlorogenic acidlcsh:QR1-502030204 cardiovascular system & hematologyMolecular Dynamics SimulationCrystallography X-RayLigandsBiochemistrylcsh:MicrobiologyArticleSerine03 medical and health sciences0302 clinical medicineChymasesCatalytic DomainHumanschamomilecardiovascular diseases; chamomile; chlorogenic acid; chymase; docking; matricin; molecular dynamics simulations; pharmacophore; Biochemistry; Molecular BiologyEnzyme InhibitorsMolecular Biologychymasechemistry.chemical_classificationBinding SitesbiologypharmacophoreChymaseActive sitemolecular dynamics simulationsmatricinAmino acidcardiovascular diseasesMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryDocking (molecular)dockingbiology.proteinPharmacophoreBiomolecules
researchProduct

Permeating disciplines: Overcoming barriers between molecular simulations and classical structure-function approaches in biological ion transport

2017

Ion translocation across biological barriers is a fundamental requirement for life. In many cases, controlling this process-for example with neuroactive drugs-demands an understanding of rapid and reversible structural changes in membrane-embedded proteins, including ion channels and transporters. Classical approaches to electrophysiology and structural biology have provided valuable insights into several such proteins over macroscopic, often discontinuous scales of space and time. Integrating these observations into meaningful mechanistic models now relies increasingly on computational methods, particularly molecular dynamics simulations, while surfacing important challenges in data manage…

0301 basic medicineProtein ConformationComputer sciencemedia_common.quotation_subjectData managementBiophysicsContext (language use)Molecular Dynamics SimulationBiochemistryIon ChannelsArticleStructure-Activity Relationship03 medical and health sciencesAnimalsHumansFunction (engineering)Biological sciencesClassical structureIon transportermedia_commonIon Transportbusiness.industryMembrane Transport ProteinsCell BiologyData science030104 developmental biologyStructural biologybusinessIon Channel GatingProtein BindingBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Direct Visualization of the Conformational Dynamics of Single Influenza Hemagglutinin Trimers

2018

Influenza hemagglutinin (HA) is the canonical type I viral envelope glycoprotein and provides a template for the membrane-fusion mechanisms of numerous viruses. The current model of HA-mediated membrane fusion describes a static "spring-loaded" fusion domain (HA2) at neutral pH. Acidic pH triggers a singular irreversible conformational rearrangement in HA2 that fuses viral and cellular membranes. Here, using single-molecule Förster resonance energy transfer (smFRET)-imaging, we directly visualized pH-triggered conformational changes of HA trimers on the viral surface. Our analyses reveal reversible exchange between the pre-fusion and two intermediate conformations of HA2. Acidification of p…

0301 basic medicineProtein ConformationHemagglutinin (influenza)Hemagglutinin Glycoproteins Influenza VirusBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyReaction coordinate03 medical and health sciencesViral envelopeInfluenza HumanFluorescence Resonance Energy TransferHumansDynamic equilibriumFusionCell MembraneLipid bilayer fusionHydrogen-Ion ConcentrationVirus InternalizationSingle Molecule ImagingHEK293 CellsHemagglutinins030104 developmental biologyMembraneFörster resonance energy transferA549 CellsInfluenza A virusBiophysicsbiology.proteinProtein BindingCell
researchProduct

Evaluating the stability of pharmacophore features using molecular dynamics simulations.

2016

Abstract Molecular dynamics simulations of twelve protein—ligand systems were used to derive a single, structure based pharmacophore model for each system. These merged models combine the information from the initial experimental structure and from all snapshots saved during the simulation. We compared the merged pharmacophore models with the corresponding PDB pharmacophore models, i.e., the static models generated from an experimental structure in the usual manner. The frequency of individual features, of feature types and the occurrence of features not present in the static model derived from the experimental structure were analyzed. We observed both pharmacophore features not visible in …

0301 basic medicineProtein FlexibilityProtein ConformationBiophysicsStability (learning theory)Molecular Dynamics SimulationLigands01 natural sciencesBiochemistryLigandScoutSet (abstract data type)03 medical and health sciencesMolecular dynamicsComputational chemistryFeature (machine learning)Pharmacophore ModelingSensitivity (control systems)Molecular BiologyBinding Sites010405 organic chemistryChemistryStructure-based Pharmacophore ModelingMolecular DynamicProteinsHydrogen BondingCell Biology0104 chemical sciences030104 developmental biologyRankingModels ChemicalDrug DesignPharmacophoreBiological systemProtein BindingBiochemical and biophysical research communications
researchProduct

Quantitative analysis of the impact of a human pathogenic mutation on the CCT5 chaperonin subunit using a proxy archaeal ortholog

2017

The human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical. We reported that the hexadecamer formed by the mutant subunit is unstable with impaired chaperoning functions. This study quantifies the loss of structural stability in the hexadecamer due to the pathogenic mutation, using differential scanning calorim…

0301 basic medicineProtein subunitMutantBiophysicsHeterologousBiochemistryChaperoninChaperoninlcsh:Biochemistry03 medical and health sciencesDSC differential scanning calorimetryCCT% chaperoninPf Pyrococcus furiosusDenaturation (biochemistry)lcsh:QD415-436Molecular Biologylcsh:QH301-705.5DLS dynamic light scatteringbiologyITC isothermal titration calorimetryWild typeIsothermal titration calorimetryCell BiologyChaperonopathiesbiology.organism_classificationProtein calorimetryNeuropathyPyrococcus furiosus030104 developmental biologyBiochemistryBiophysiclcsh:Biology (General)Pyrococcus furiosusChaperonopathieCCT5; Chaperonin; Chaperonopathies; Neuropathy; Protein calorimetry; Pyrococcus furiosus; Biophysics; Biochemistry; Molecular Biology; Cell BiologyCCT5Pyrococcus furiosuResearch ArticlePf-CD1 Pyrococcus furiosus chaperonin subunit with the last 22 amino acids deletedBiochemistry and Biophysics Reports
researchProduct

Different Within-Host Viral Evolution Dynamics in Severely Immunosuppressed Cases with Persistent SARS-CoV-2

2021

12 páginas, 2 figuras, 1 tabla.

0301 basic medicineQH301-705.5medicine.medical_treatment030106 microbiologyInmunologíaMedicine (miscellaneous)GenomicsSingle-nucleotide polymorphismDiseaseBiologyArticleGeneral Biochemistry Genetics and Molecular BiologyVirusdiversityPersistence03 medical and health sciencesmedicinegenomicsBiology (General)Evolutionary dynamicsimmunosuppressedDiversitySARS-CoV-2COVID-19ImmunosuppressionGenomicspersistencemedicine.diseaseVirologyviral viabilityLymphoma030104 developmental biologyImmunosuppressedViral evolutionViral viability
researchProduct

New Approach of Controlling Cardiac Alternans

2018

The alternans of the cardiac action potential duration is a pathological rhythm. It is considered to be relating to the onset of ventricular fibrillation and sudden cardiac death. It is well known that, the predictive control is among the control methods that use the chaos to stabilize the unstable fixed point. Firstly, we show that alternans (or period-2 orbit) can be suppressed temporally by the predictive control of the periodic state of the system. Secondly, we determine an estimation of the size of a restricted attraction's basin of the unstable equilibrium point representing the unstable regular rhythm stabilized by the control. This result allows the application of predictive control…

0301 basic medicineQuantitative Biology::Tissues and Organs[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS][ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS]Beat (acoustics)[MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS][ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processingFixed point01 natural sciences010305 fluids & plasmasSudden cardiac death03 medical and health sciencesRhythmControl theory0103 physical sciencesmedicineDiscrete Mathematics and CombinatoricsComputingMilieux_MISCELLANEOUSMathematics[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processingApplied MathematicsCardiac action potentialmedicine.diseaseModel predictive control030104 developmental biology[NLIN.NLIN-CD] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]Ventricular fibrillation[NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD][SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingStationary state
researchProduct

Recent advances on CDK inhibitors: An insight by means of in silico methods

2017

The cyclin dependent kinases (CDKs) are a small family of serine/threonine protein kinases that can act as a potential therapeutic target in several proliferative diseases, including cancer. This short review is a survey on the more recent research progresses in the field achieved by using in silico methods. All the "armamentarium" available to the medicinal chemists (docking protocols and molecular dynamics, fragment-based, de novo design, virtual screening, and QSAR) has been employed to the discovery of new, potent, and selective inhibitors of cyclin dependent kinases. The results cited herein can be useful to understand the nature of the inhibitor-target interactions, and furnish an ins…

0301 basic medicineQuantitative structure–activity relationshipMolecular dynamicIn silicoCDKQuantitative Structure-Activity RelationshipAntineoplastic AgentsComputational biologyMolecular Dynamics SimulationBioinformatics01 natural sciencesSerine03 medical and health sciencesCyclin-dependent kinaseNeoplasmsDrug DiscoveryAnimalsHumansProtein Kinase InhibitorsPharmacologyVirtual screeningHVTSbiologyChemistryKinaseQSARDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryGeneral MedicineCyclin-Dependent Kinases0104 chemical sciencesMolecular Docking Simulation010404 medicinal & biomolecular chemistry030104 developmental biologyDocking (molecular)Drug Designbiology.proteinComputer-Aided DesignIn silico methodMolecular modelling
researchProduct

Noncoding RNAs in Critical Limb Ischemia

2020

Peripheral artery disease, caused by chronic arterial occlusion of the lower extremities, affects over 200 million people worldwide. Peripheral artery disease can progress into critical limb ischemia (CLI), its more severe manifestation, which is associated with higher risk of limb amputation and cardiovascular death. Aiming to improve tissue perfusion, therapeutic angiogenesis held promise to improve ischemic limbs using delivery of growth factors but has not successfully translated into benefits for patients. Moreover, accumulating studies suggest that impaired downstream signaling of these growth factors (or angiogenic resistance) may significantly contribute to CLI, particularly under h…

0301 basic medicineRNA UntranslatedAngiogenesisCritical IllnessNeovascularization PhysiologicDisease030204 cardiovascular system & hematologyBioinformaticsArticlePeripheral Arterial Disease03 medical and health sciences0302 clinical medicineIschemiaRisk FactorsmicroRNADiabetes MellitusAnimalsHumansMedicineTherapeutic angiogenesisProgenitor cellHypoxiaInflammationbusiness.industryStem CellsHemodynamicsCritical limb ischemiaHypoxia (medical)Prognosisbody regions030104 developmental biologyGene Expression RegulationRegional Blood FlowArteriogenesismedicine.symptomCardiology and Cardiovascular MedicinebusinessSignal TransductionArteriosclerosis, Thrombosis, and Vascular Biology
researchProduct