Search results for "ELECTRICAL RESISTIVITY"

showing 10 items of 357 documents

Reduction of temperature coefficients in multicrystalline silicon solar cells after light-induced degradation

2015

This study focuses on the variations of the temperature coefficients after light-induced degradation (LID) of compensated multicrystalline silicon solar cells from three different ingots. The ingots have been chosen to see the effect of the compensation level, the resistivity and the impact of adding gallium to keep the resistivity as constant as possible along the ingot. The temperature coefficients of the efficiency experience a major decrease after LID on all ingots. We found that this decrease varies along the ingot height and does not correspond to the VOC drop. Moreover, no direct correlation with the interstitial oxygen concentration profiles could be seen.

Materials sciencechemistrySiliconElectrical resistivity and conductivityDrop (liquid)Metallurgychemistry.chemical_elementDegradation (geology)Limiting oxygen concentrationYttriumGalliumIngot2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC)
researchProduct

Effective electrical conductivity of carbon nanotube–epoxy nanocomposites

2016

The electrical conductivity of carbon nanotube–epoxy composites is investigated analytically and experimentally. The theoretical predictions of the effective electrical conductivity of carbon nanotube–epoxy composites were performed by the analytical approach based on a micromechanical model of composites. The parametric analysis carried out revealed an influence of geometrical and electrical parameters of the micromechanical model on the effective electrical conductivity of carbon nanotube–epoxy nanocomposite. The nanocomposites made from the DGEBA-based and RTM6 epoxy resins filled with different weight content of Baytubes C150P and N7000 multi-walled carbon nanotubes were prepared. The …

Materials sciencechemistry.chemical_element02 engineering and technologyCarbon nanotube01 natural scienceslaw.inventionCondensed Matter::Materials ScienceElectrical resistivity and conductivitylaw0103 physical sciencesMaterials ChemistryComposite material010302 applied physicsNanocompositeMechanical EngineeringEpoxy021001 nanoscience & nanotechnologyEpoxy nanocompositesMicromechanical modelComputer Science::OtherchemistryMechanics of Materialsvisual_artCeramics and Compositesvisual_art.visual_art_medium0210 nano-technologyCarbonJournal of Composite Materials
researchProduct

Star-Shaped Conjugated Systems

2010

The present review deals with the preparation and the properties of star-shaped conjugated compounds. Three, four or six conjugated arms are attached to cross-conjugated cores, which consist of single atoms (B, C+, N), benzene or azine rings or polycyclic ring systems, as for example triphenylene or tristriazolotriazine. Many of these shape-persistent [n]star compounds tend to π-stacking and self-organization, and exhibit interesting properties in materials science: Linear and non-linear optics, electrical conductivity, electroluminescence, formation of liquid crystalline phases, etc.

Materials scienceoptoelectronics[n]starsTriphenyleneReviewStar (graph theory)ElectroluminescenceConjugated systemRing (chemistry)lcsh:Technologychemistry.chemical_compoundElectrical resistivity and conductivityCC couplingOrganic chemistryGeneral Materials ScienceBenzenelcsh:Microscopylcsh:QC120-168.85lcsh:QH201-278.5lcsh:TAzineCrystallographychemistrylcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971conjugationMaterials
researchProduct

Opportunity of metallic interconnects for ITSOFC : Reactivity and electrical property.

2006

International audience; Iron-base alloys (Fe-Cr) are proposed hereafter as materials for interconnect of planar-type intermediate temperature solid oxide fuel cell (ITSOFC); they are an alternative solution instead of the use of ceramic interconnects. These steels form an oxide layer (chrornia) which protects the interconnect from the exterior environment, but is an electrical insulator. One solution envisaged in this work is the deposition of a reactive element oxide coating, that slows down the formation of the oxide layer and that increases its electric conductivity. The oxide layer, formed at high temperature on the uncoated alloys, is mainly composed of chromia; it grows in accordance …

Materials scienceoxidationChromia-forming alloy; Electrical resistivity; MOCVD; Oxidation; Screen-printing; SOFC interconnect; Renewable Energy Sustainability and the Environment; Energy Engineering and Power Technology; Physical and Theoretical Chemistry; Electrical and Electronic EngineeringAlloyOxideEnergy Engineering and Power Technology02 engineering and technologyengineering.material010402 general chemistry01 natural scienceschemistry.chemical_compoundElectrical resistance and conductanceCoatingchromia-forming alloyElectrical resistivity and conductivitySOFC interconnectRenewable EnergyCeramicElectrical and Electronic EngineeringPhysical and Theoretical ChemistryComposite materialSustainability and the EnvironmentRenewable Energy Sustainability and the EnvironmentMetallurgy[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyscreen-printingChromia0104 chemical sciences[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry13. Climate actionvisual_art[ CHIM.MATE ] Chemical Sciences/Material chemistry[ CHIM.THEO ] Chemical Sciences/Theoretical and/or physical chemistryMOCVDengineeringvisual_art.visual_art_mediumSolid oxide fuel cell0210 nano-technologyelectrical resistivity
researchProduct

Low Temperature Growth of High Purity, Low Resistivity Copper Films by Atomic Layer Deposition

2011

The atomic layer deposition of copper metal thin films was achieved using a three precursor sequence entailing Cu(OCHMeCH2NMe2)2, formic acid, and hydrazine. A constant growth rate of 0.47−0.50 A/cycle was observed at growth temperatures between 100 and 170 °C. The resulting films are high purity and have low resistivities.

Materials scienceta114Formic acidGeneral Chemical EngineeringHydrazineInorganic chemistryAnalytical chemistrychemistry.chemical_elementGeneral ChemistryCopperchemistry.chemical_compoundAtomic layer depositionchemistryElectrical resistivity and conductivityMaterials ChemistryAtomic layer epitaxyGrowth rateThin filmta116Chemistry of Materials
researchProduct

Tantalum nitride thin film resistors by low temperature reactive sputtering for plastic electronics

2008

This article describes the fabrication and characterisation of tantalum nitride (TaN) thin film for applications in plastic electronics. Thin films of comparable thickness (50-60 nm) have been deposited by RF-magnetron-reactive sputtering at low temperature (100 °C) and their structure and physical (electrical and mechanical) properties have been correlated by using sheet resistance, stress measurements, atomic force microscopy (AFM), XPS, and SIMS. Different film compositions have been obtained by varying the argon to nitrogen flow ratio in the sputtering chamber. XPS showed that 5:1, 2:1 and 1:1 Ar:N 2 ratios gives Ta 2 N, TaN and Ta 3 N 5 phases, respectively. Sheet resistance revealed a…

Materials sciencetantalum nitrideAnalytical chemistryTantalumchemistry.chemical_elementSurfaces and InterfacesGeneral ChemistryCondensed Matter PhysicsGrain sizeSurfaces Coatings and Filmschemistry.chemical_compoundTantalum nitridechemistryX-ray photoelectron spectroscopyElectrical resistivity and conductivitySputteringXPSMaterials ChemistryAFMThin filmplastic electronicsSIMSSheet resistanceplastic electronics tantalum nitride XPS AFMSIMSSurface and Interface Analysis
researchProduct

Validation of matrix diffusion modeling

2010

Abstract Crystalline rock has been chosen as the host medium for repository of highly radioactive spent nuclear fuel in Finland. Radionuclide transport takes place along water-carrying fractures, and matrix diffusion has been indicated as an important retarding mechanism that affects the transport of mobile fission and activation products. The model introduced here for matrix diffusion contains a flow channel facing a porous matrix with stagnant water into which tracer molecules advected in the channel can diffuse. In addition, the possibility of a finite depth of the matrix and an initial tracer distribution (‘contamination’) in the matrix are included in the model. In order to validate th…

Matrix (mathematics)GeophysicsExperimental systemGeochemistry and PetrologyChemistryElectrical resistivity and conductivityFissionTRACERAnalytical chemistryMechanicsDiffusion (business)PorosityIonPhysics and Chemistry of the Earth, Parts A/B/C
researchProduct

ChemInform Abstract: NbNi2.38Te3, a New Metal-Rich Niobium Telluride with a “Stuffed” TaFe1+ xTe3 Structure.

2010

The authors report the synthesis, structure, and electrical properties of NbNi{sub 2.38}Te{sub 3}. The structure of the compound was determined by X-ray crystallography and the electric conductivity of the compound was measured.

MetalCrystallographychemistry.chemical_compoundchemistryElectrical resistivity and conductivityvisual_artTellurideMetallurgyvisual_art.visual_art_mediumNiobiumchemistry.chemical_elementGeneral MedicineChemInform
researchProduct

High frequency resistivity in La2-xSrxCu1-yCoyO4 ceramics

2019

Resitivity measurements have been performed in La:Sr:Cu:Co:O ceramics in a frequency range from 5Hz – 10 9 Hz. A strongly frequency dependent resistance has been observed in La 2 CUO 4 which we interpret in terms of a smooth dielectric to metal transition due to localization effects.

MetalMaterials scienceCondensed matter physicsElectrical resistivity and conductivityvisual_artvisual_art.visual_art_mediumEnergy Engineering and Power TechnologyDielectricCeramicElectrical and Electronic EngineeringCondensed Matter PhysicsElectronic Optical and Magnetic Materials
researchProduct

Electrical Bistability around Room Temperature in an Unprecedented One-Dimensional Coordination Magnetic Polymer

2013

The synthesis, crystal structure, and physical properties of an unprecedented one-dimensional (1D) coordination polymer containing [Fe2(S2C6H2Cl2)4](2-) entities bridged by dicationic [K2(μ-H2O)2(THF)4](2+) units are described. The magnetic properties show that the title compound presents pairwise Fe-Fe antiferromagnetic interactions that can be well reproduced with a S = 1/2 dimer model with an exchange coupling, J = -23 cm(-1). The electrical conductivity measurements show that the title compound is a semiconductor with an activation energy of about 290 meV and two different transitions, both with large hysteresis of about 60 and 30 K at 260-320 K and 350-380 K, respectively. These two tr…

Models MolecularCalorimetry Differential ScanningMolecular StructurePolymersCoordination polymerbusiness.industryTemperatureElectronsCrystal structureActivation energyInorganic Chemistrychemistry.chemical_compoundHysteresisCrystallographyMagnetic FieldsDifferential scanning calorimetrySemiconductorchemistryElectrical resistivity and conductivityOrganometallic CompoundsAntiferromagnetismPhysical and Theoretical ChemistrybusinessInorganic Chemistry
researchProduct