Search results for "ELECTRON MICROSCOPY"

showing 10 items of 706 documents

Membrane vesicles shed into the extracellular medium by human breast carcinoma cells carry tumor-associated surface antigens.

1995

We have compared the pattern of surface antigen expression, as detected by monoclonal antibodies (mAbs), in plasma membranes vs shed membrane vesicles of two human breast carcinoma cell lines, MCF-7 and 8701-BC. Antigen expression was detected on cells by immunofluorescence (IF) analysis, whilst, due to their small dimensions, the same technique was not applicable to vesicles. For these structures dot-blot analysis and immunoelectron microscopy (IEM) were employed. When applicable, both cell membranes and membrane vesicles were immunoprecipitated and the precipitate (IP) was analyzed by SDS-PAGE. Cells of both lines expressed HLA class I antigens, epithelial cytokeratins, β1 integrins, CEA …

Cancer Researchmedicine.drug_classImmunoelectron microscopyCellBreast NeoplasmsMonoclonal antibodyImmunofluorescenceAntigenAntigens NeoplasmmedicineTumor Cells CulturedHumansMicroscopy Immunoelectronmedicine.diagnostic_testbiologyChemistryVesicleCarcinoma Ductal BreastCell MembraneGeneral MedicineMolecular biologyImmunohistochemistryCell biologyCulture MediaPleural Effusion MalignantMicroscopy Electronmedicine.anatomical_structureOncologyCell cultureAntigens SurfaceLiposomesbiology.proteinAntibodyExtracellular SpaceClinicalexperimental metastasis
researchProduct

Going beyond histology. Synchrotron micro-computed tomography as a methodology for biological tissue characterization: from tissue morphology to indi…

2009

Current light microscopic methods such as serial sectioning, confocal microscopy or multiphoton microscopy are severely limited in their ability to analyse rather opaque biological structures in three dimensions, while electron optical methods offer either a good three-dimensional topographic visualization (scanning electron microscopy) or high-resolution imaging of very thin samples (transmission electron microscopy). However, sample preparation commonly results in a significant alteration and the destruction of the three-dimensional integrity of the specimen. Depending on the selected photon energy, the interaction between X-rays and biological matter provides semi-transparency of the spe…

Cartilage Articularthree-dimensional imagingMaterials scienceOpacityScanning electron microscope1004Biomedical EngineeringBiophysicsAnalytical chemistryBioengineeringPhoton energyIn Vitro TechniquesBiochemistrysynchrotron micro-computed tomographylaw.inventionBiomaterialshistologyChondrocyteslawConfocal microscopyResearch articlesAnimalscartilageCells CulturedTomographic reconstruction30HistologySynchrotron124Radiographic Image EnhancementTransmission electron microscopychondrocyteCattleTomography X-Ray ComputedSynchrotronsscanning electron microscopyBiotechnologyBiomedical engineeringJournal of the Royal Society, Interface
researchProduct

Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered

2022

ABSTRACT Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particul…

Cell signalingved/biology.organism_classification_rank.speciesStreptomyces coelicolormembrane vesiclesApplied Microbiology and BiotechnologyStreptomycesantibioticsproteomicsBacterial Proteinsproteomics.actinomycetesExtracellularModel organismEcologybiologyelectron microscopyved/biologyChemistryVesicleStreptomyces coelicolorProteinsExtracellular vesiclebiology.organism_classificationmetabolomicsStreptomycesAnti-Bacterial AgentsBiochemistryBiogenesisFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

The retinitis pigmentosa 28 protein FAM161A is a novel ciliary protein involved in intermolecular protein interaction and microtubule association

2012

Loss-of-function mutations in the gene encoding FAM161A were recently discovered as the cause for RP28, an autosomal recessive form of retinitis pigmentosa. To initiate the characterization of the cellular role of FAM161A in the retina, we focused on its subcellular localization and conducted in vitro studies to identify FAM161A-interacting proteins and associated cellular structures. Immunohistochemistry revealed the presence of mouse FAM161A in the photoreceptor inner segments, the synaptic regions of the outer and inner plexiform layers and the ganglion cells. In mouse and human retinal sections from unfixed eyes, FAM161A localized to the ciliary region linking photoreceptor outer and in…

CentrioleImmunoelectron microscopyBiologyMicrotubulesRetinaMice03 medical and health sciences0302 clinical medicineMicrotubuleRetinitis pigmentosaGeneticsmedicineAnimalsHumansBasal bodyPhotoreceptor CellsEye ProteinsMolecular BiologyGenetics (clinical)030304 developmental biologyCentrosome0303 health sciencesRetinaCiliumGeneral Medicinemedicine.diseaseCell biologymedicine.anatomical_structureCentrosomeMutationsense organsRetinitis Pigmentosa030217 neurology & neurosurgeryHuman Molecular Genetics
researchProduct

Microstructure and mechanical effects of spark plasma sintering in alumina monolithic ceramics

2013

The specific effects of spark plasma sintering (SPS) on the creep behavior, microstructure and mechanical properties of alumina monolithic ceramic were investigated. SPS introduces strains that concentrate at grain boundaries and inhibit crack growth, resulting in an improvement in the flexural strength and fracture toughness. However, creep blocks grain boundary movements and decreases the reliability of the material. These strains can be removed by a post-sintering thermal treatment, which plays an important role in the distribution of dislocations.

CeramicsMaterials scienceSpark plasma sinteringDislocationsMechanical propertiesThermal treatmentFracture toughnessFlexural strengthCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAGeneral Materials ScienceCeramicComposite materialMechanical EngineeringfungiMetals and Alloystechnology industry and agriculturefood and beveragesCondensed Matter PhysicsMicrostructureequipment and suppliesCreepMechanics of Materialsvisual_artvisual_art.visual_art_mediumGrain boundaryHigh-temperature deformationTransmission electron microscopy
researchProduct

Effects of femtosecond laser and other surface treatments on the bond strength of metallic and ceramic orthodontic brackets to zirconia.

2017

Femtosecond laser has been proposed as a method for conditioning zirconia surfaces to boost bond strength. However, metallic or ceramic bracket bonding to femtosecond lasertreated zirconia surfaces has not been tested. This study compared the effects of four conditioning techniques, including femtosecond laser irradiation, on shear bond strength (SBS) of metallic and ceramic brackets to zirconia.Three hundred zirconia plates were divided into five groups: 1) control (C); 2) sandblasting (APA); 3) silica coating and silane (SC); 4) femtosecond laser (FS); 5) sandblasting followed by femtosecond laser (APA+SC). A thermal imaging camera measured temperature changes in the zirconia during irrad…

CeramicsScanning electron microscopeOrthodontic Bracketslcsh:MedicineTissue AdhesionsCoating Materials030207 dermatology & venereal diseases0302 clinical medicineMedicine and Health SciencesSilaneElectron MicroscopyCubic zirconiaCeramicZirconium oxideComposite materiallcsh:ScienceMicroscopyMultidisciplinaryBond strengthBracketTemperatureOptical EquipmentMetalsvisual_artPhysical SciencesFemtosecondvisual_art.visual_art_mediumEngineering and TechnologyScanning Electron MicroscopyShear StrengthResearch ArticleMaterials scienceMaterials by StructureMaterials ScienceOral MedicineEquipmentOrthodonticsResearch and Analysis MethodsENPEP gene03 medical and health sciencesCoatingsAdhesivesShear strengthMaterials by AttributeUniversal testing machineSurface TreatmentsLaserslcsh:R030206 dentistryManufacturing ProcessesMicroscopy Electron Scanninglcsh:QZirconiumPLoS ONE
researchProduct

Structural and Chemical Characterization of Cerium Oxide Thin Layers Grown on Silicon Substrate

2015

In this study, we report transmission electron microscopy and electron energy loss spectroscopy study of cerium oxide thin layers deposited on silicon substrate. Transmission electron microscopy experiments have revealed the flat morphology of the deposited layers. In addition, studies of high resolution images have indicated the presence of mainly ceria crystallized nanoparticles. Energy electron loss spectroscopy measurements were also performed in scanning mode to study the evolution of the cerium valence. In addition to Ce4+ inside the layer, the presence of amorphous cerium silicate with valence +3 is pointed out at the vicinity of the substrate.

Cerium oxideCeriumMaterials scienceValence (chemistry)Thin layersSiliconchemistryChemical engineeringTransmission electron microscopyElectron energy loss spectroscopyInorganic chemistrychemistry.chemical_elementAmorphous solidMaterials Today: Proceedings
researchProduct

Growth of nano-porous Pt-doped cerium oxide thin films on glassy carbon substrate

2013

Abstract Glassy carbon (GC) substrates were treated by the oxygen plasma over several periods of time. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) study showed the dramatic influence of oxygen plasma on the morphology of glassy carbon. The treatment leads to the formation of nanostructured surface, which consists of well separated rod-like nanostructures oriented perpendicularly to the substrate surface. The surface roughness was found to increase with increasing treatment time. By using magnetron co-sputtering of platinum and cerium oxide we can prepare oxide layers continuously doped with Pt atoms during the growth. This tec…

Cerium oxideMaterials scienceScanning electron microscopeProcess Chemistry and TechnologyOxideNanotechnologySubstrate (electronics)Glassy carbonSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundChemical engineeringchemistryTransmission electron microscopyMaterials ChemistryCeramics and CompositesSurface roughnessThin filmCeramics International
researchProduct

Nondestructive full-field imaging XANES-PEEM analysis of cosmic grains

2006

For chemical analysis of submicron particles, mass spectrometric methods have the disadvantage of being destructive. Thus, a nondestructive elemental and chemical mapping with a high spatial resolution prior to mass analysis is extremely valuable to precharacterize the sample. Here, first results are presented of combined XANES (x-ray absorption near-edge structure) and PEEM (photoemission electron microscopy) measurements on a cosmic grain fraction from the Murchison meteorite. This nondestructive full-field imaging method is well suited for a quantitative analysis and for a preselection prior to detailed mass spectrometric investigations with isotopic resolution/selectivity. A spectral un…

Chemical imagingMurchison meteoritePhotoemission electron microscopyNuclear magnetic resonanceMaterials scienceComposite numberResolution (electron density)Analytical chemistryAbsorption (logic)Condensed Matter PhysicsImage resolutionXANESElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Size-controlled magnetic nanoparticles in surfactant-rich thin films: a combined EXAFS, SAXS, AFM and MFM study

2008

Chemical synthesis methodAtomic force microscopyMagnetic NanoparticleStructure of nanoscale materials.Thin films morphologyTransmission electron microscopy
researchProduct