Search results for "ELECTROSPINNING"

showing 10 items of 105 documents

Processing, structure, property relationships and release kinetics of electrospun PLA/Carvacrol membranes

2018

Abstract In this work, polylactic acid (PLA) membranes at two different carvacrol (CRV) nominal concentration (i.e. 14 wt% and 28 wt%) were prepared via electrospinning technology. The membranes were characterized by scanning electron microscopy, ATR-FTIR and calorimetric measurements as well as tensile tests. Moreover, the release kinetics of CRV in phosphate buffered solution at 37 °C was monitored through UV–Vis measurements and the data were fitted with a power law model. Results indicated that the successful incorporation of CRV in the polymer matrix damaged the fibers morphology but increased all the mechanical parameters investigated (i.e. elastic modulus, tensile strength and elonga…

Materials sciencePolymers and PlasticsKineticsGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesEssential oilchemistry.chemical_compoundPhysics and Astronomy (all)Polylactic acidUltimate tensile strengthMaterials ChemistryControlled releaseElastic moduluschemistry.chemical_classificationPolymers and PlasticElectrospinningOrganic ChemistryPolymer021001 nanoscience & nanotechnologyControlled releaseElectrospinning0104 chemical sciencesMembraneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineering0210 nano-technology
researchProduct

Effect of alkyl derivatization of gellan gum during the fabrication of electrospun membranes

2021

Electrospun nanofibers based on polysaccharides represent a consolidated approach in Tissue Engineering and Regenerative Medicine (TERM) and nanomedicine as a drug delivery system (DDS). In this work, two chemical derivatives of a low molecular weight gellan gum (96.7 kDa) with aliphatic pendant tails were processed by electrospinning technique into non-woven nanofibrous mats. In order to generate spinnable blends, it was necessary to associate poly vinyl alcohol (PVA). The relationships between the physicochemical properties and the processability via electrospinning technique of gellan gum alkyl derivatives (GG-C8 and GG-C12 having a degree of alkyl chain derivatization of 17 mol % and 1…

Materials sciencePolymers and PlasticsMaterials Science (miscellaneous)02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing Engineeringchemistry.chemical_compoundTissue engineeringelectrospinning; gellan gum; nanofibers; PVAnanofibersChemical Engineering (miscellaneous)DerivatizationAlkylchemistry.chemical_classificationElectrospinning021001 nanoscience & nanotechnologyGellan gumElectrospinning0104 chemical scienceschemistryChemical engineeringSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoNanofiberDrug deliveryPVANanomedicine0210 nano-technologygellan gum
researchProduct

Structure–property relationship and controlled drug release from multiphasic electrospun carvacrol-embedded polylactic acid/polyethylene glycol and p…

2018

Electrospinning technologies gained considerable interest over the last decade. In this study, it is proposed a systematic study of polylactic acid/polyethylene glycol (PLA/PEG) and polylactic acid/polyethylene oxide (PLA/PEO) electrospun blends at different concentrations. The effect of blend composition and PEG molecular weight on the morphological and mechanical properties of the mats was evaluated. Furthermore, the kinetic release of carvacrol as model drug in phosphate buffer saline at 37℃ was studied and the data were then fitted using an exponential model. The scanning electron microscopy revealed that the morphology of the mats was strongly dependent on the relative ratio PLA:PEG, …

Materials sciencePolymers and PlasticsMaterials Science (miscellaneous)medical textilesfabricationmacromolecular substances02 engineering and technologyPolyethylene glycolIndustrial and Manufacturing Engineeringmaterialschemistry.chemical_compound020401 chemical engineeringPolylactic acidPEG ratioChemical Engineering (miscellaneous)Carvacrol0204 chemical engineeringnonwovendiffusiontechnology industry and agriculturestructure propertiesSettore ING-IND/34 - Bioingegneria IndustrialePolyethylene oxide021001 nanoscience & nanotechnologyElectrospinningChemistrySettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryChemical engineeringNanofiberDrug releaseprocessingstrength0210 nano-technologyJournal of Industrial Textiles
researchProduct

Proton conductivity through polybenzimidazole composite membranes containing silica nanofiber mats

2019

The quest for sustainable and more efficient energy-converting devices has been the focus of researchers&prime

Materials sciencePolymers and PlasticspolymerProton exchange membrane fuel cellfuel cellssilici compostosArticlelcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistrynanofibersThermal stabilitysolucions polimèriquesComputingMilieux_MISCELLANEOUSelectrospinningchemistry.chemical_classificationGeneral ChemistryPolymerSilaneElectrospinningDielectric spectroscopypolybenzimidazoleMembraneelectrochemical impedance spectroscopychemistryChemical engineeringsilicaNanofiberproton conductivityconductivitat elèctricaproton exchange membrane
researchProduct

An asymmetric electrospun membrane for the controlled release of ciprofloxacin and FGF-2: Evaluation of antimicrobial and chemoattractant properties.

2021

Here, an asymmetric double-layer membrane has been designed and fabricated by electrospinning as a tool for a potential wound healing application. A hydrophobic layer has been produced by using a polyurethane-polycaprolactone (PU-PCL) copolymer and loaded with the antibacterial ciprofloxacin whereas an ion responsive hydrophilic layer has been produced by using an octyl derivative of gellan gum (GG-C8) and polyvinyl alcohol (PVA) and loaded with the growth factor FGF-2. This study investigated how the properties of this asymmetric membrane loaded with actives, were influenced by the ionotropic crosslinking of the hydrophilic layer. In particular, the treatment in DPBS and the crosslinking i…

Materials sciencePolyurethanesNanofibersBioengineeringmacromolecular substances02 engineering and technologyChemotaxis (FGF-2)Antimicrobial activity (CPX); Chemotaxis (FGF-2); Double layer electrospun membrane; Gellan gum alkyl-derivative; Polyurethanes010402 general chemistry01 natural sciencesPolyvinyl alcoholGellan gum alkyl-derivativeBiomaterialschemistry.chemical_compoundAnti-Infective AgentsCiprofloxacinCopolymerDouble layer electrospun membraneChemotactic Factorstechnology industry and agriculture021001 nanoscience & nanotechnologyAntimicrobialControlled releaseBandagesGellan gumElectrospinning0104 chemical sciencesAnti-Bacterial AgentsAntimicrobial activity (CPX)MembranechemistryMechanics of MaterialsSettore CHIM/09 - Farmaceutico Tecnologico ApplicativoDelayed-Action PreparationsBiophysicsFibroblast Growth Factor 20210 nano-technologyLayer (electronics)Materials scienceengineering. C, Materials for biological applications
researchProduct

Nonthrombogenic, Biodegradable Elastomeric Polyurethanes with Variable Sulfobetaine Content

2014

For applications where degradable polymers are likely to have extended blood contact, it is often important for these materials to exhibit high levels of thromboresistance. This can be achieved with surface modification approaches, but such modifications may be transient with degradation. Alternatively, polymer design can be altered such that the bulk polymer is thromboresistant and this is maintained with degradation. Toward this end a series of biodegradable, elastic polyurethanes (PESBUUs) containing different zwitterionic sulfobetaine (SB) content were synthesized from a polycaprolactone-diol (PCL-diol):SB-diol mixture (100:0, 75:25, 50:50, 25:75 and 0:100) reacted with diisocyanatobuta…

Materials sciencePolyurethanesThrombogenicityBiocompatible MaterialsElastomerFibrinolytic AgentsHardnessTensile StrengthUltimate tensile strengthPolymer chemistryAbsorbable ImplantsMaterials TestingAnimalsGeneral Materials ScienceBlood Coagulationchemistry.chemical_classificationbiodegradable polyurethane sulfobetaine cardiovascular thromboresistance vascular graft zwitterionPolymerBiodegradationElectrospinningBetainechemistryChemical engineeringSurface modificationDegradation (geology)Cattle
researchProduct

Morphology and structure of electrospun CoFe2O4/multi-wall carbon nanotubes composite nanofibers

2010

CoFe2O4/multiwall carbon nanotubes (MWCNTs) composite nanofibers were produced by electrospinning a dispersion of MWCNTs in a solution of polyvinylpyrrolidone, iron(III) nitrate nonahydrate, cobalt (II) acetate tetrahydrate, absolute ethanol and H2O. Microstructure was examined by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). Thermal behaviour was studied by thermogravimetry and differential thermal analysis (TG-DTA) and phase analysis of calcined fibers was performed by X-ray diffraction (XRD). Upon thermal treatment at 450 °C defect-free, randomly oriented composite fibers having a mean diameter of 60 ± 10 nm were obtained. The results s…

Materials scienceScanning electron microscopeGeneral Chemical Engineeringa. nanofiberMineralogyCarbon nanotubeIndustrial and Manufacturing Engineeringlaw.inventioncobalt ferritelawDifferential thermal analysismorphologytemEnvironmental ChemistryHigh-resolution transmission electron microscopynanofiberelectrospinningSettore CHIM/03 - Chimica Generale e Inorganicaa. nanofiber; carbon nanotubes; cobalt ferrite; electron microscopy; electrospinning; morphology; mwcnt; nanofiber; temcarbon nanotubeselectron microscopyGeneral ChemistryElectrospinningThermogravimetryChemical engineeringmwcntTransmission electron microscopyNanofiber
researchProduct

Antimicrobial Bilayer Nanocomposites Based on the Incorporation of As-Synthetized Hollow Zinc Oxide Nanotubes

2020

© 2020 by the authors.

Materials scienceScanning electron microscopeGeneral Chemical Engineeringchemistry.chemical_elementMicrobiologiaZincengineering.materialArticlelaw.inventionlcsh:ChemistryAtomic layer depositionCoatinglawZinc oxideGeneral Materials ScienceCalcinationMaterialselectrospinningNanocompositeElectrospinningAtomic layer depositionzinc oxideElectrospinningNanotubeChemical engineeringchemistrylcsh:QD1-999Nanofiberatomic layer depositionengineeringnanotubeMaterials nanoestructuratsNanomaterials
researchProduct

Engineering of Nanofibrous Amorphous and Crystalline Solid Dispersions for Oral Drug Delivery

2018

Poor aqueous solubility (<0.1 mg/mL) affects a significant number of drugs currently on the market or under development. Several formulation strategies including salt formation, particle size reduction, and solid dispersion approaches have been employed with varied success. In this review, we focus primarily on the emerging trends in the generation of amorphous and micro/nano-crystalline solid dispersions using electrospinning to improve the dissolution rate and in turn the bioavailability of poorly water-soluble drugs. Electrospinning is a simple but versatile process that utilizes electrostatic forces to generate polymeric fibers and has been used for over 100 years to generate synthet…

Materials scienceamorphousoral drug deliveryPharmaceutical Sciencelcsh:RS1-44102 engineering and technologyReview030226 pharmacology & pharmacylcsh:Pharmacy and materia medica03 medical and health sciences0302 clinical medicineamorphoucrystallineaqueous solubility enhancementDissolutionelectrospinningsolid dispersion021001 nanoscience & nanotechnologyElectrospinningAmorphous solidSynthetic fiberChemical engineeringPARTICLE SIZE REDUCTION0210 nano-technologyDispersion (chemistry)Oral retinoidSalt formation
researchProduct

Nanocarbons in electrospun polymeric nanomats for tissue engineering: A review

2017

Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity an…

Materials scienceantimicrobial propertiesPolymers and PlasticsBiocompatibilityCNTgraphene; CNTs; nanodiamonds; fullerene; biopolymer; tissue engineering; electrospinning; mechanical properties; electrical properties; antimicrobial propertiesnanodiamondNanotechnology02 engineering and technologyCarbon nanotubeReviewengineering.materialmechanical properties010402 general chemistry01 natural scienceslaw.inventionlcsh:QD241-441Tissue engineeringlcsh:Organic chemistrylawbiopolymerNano-mechanical propertieelectrospinningelectrical propertiechemistry.chemical_classificationCNTsGraphenefullerenegrapheneGeneral ChemistryPolymer021001 nanoscience & nanotechnologyElectrospinning0104 chemical scienceschemistrynanodiamondstissue engineeringelectrical propertiesengineeringBiopolymer0210 nano-technology
researchProduct