Search results for "ENZYME"
showing 10 items of 3924 documents
GH57 amylopullulanase from Desulfurococcus amylolyticus JCM 9188 can make highly branched cyclodextrin via its transglycosylation activity.
2018
Abstract Desulfurococcus amylolyticus is an anaerobic and hyperthermophilic crenarchaeon that can use various carbohydrates as energy sources. We found a gene encoding a glycoside hydrolase family 57 amylolytic enzymes (DApu) in a putative carbohydrate utilization gene cluster in the genome of D. amylolyticus . This gene has an open reading frame of 1,878 bp and consists of 626 amino acids with a molecular mass of 71 kDa. Recombinant DApu (rDApu) completely hydrolyzed pullulan to maltotriose by attacking α-1,6-glycosidic linkages, and was able to produce glucose and maltose from soluble starch and amylopectin. Although rDApu showed no activity toward α-cyclodextrin (CD) and β-CD, maltooctao…
TheGCA1gene encodes a glycosidase-like protein in the cell wall ofCandida albicans
2016
Candida albicans Gca1p is a putative glucoamylase enzyme which contains 946 amino acids, 11 putative sites for N -glycosylation and 9 for O -glycosylation. Gca1p was identified in β-mercaptoethanol extracts from isolated cell walls of strain C. albicans SC5314 and it is involved in carbohydrate metabolism. The significance and the role of this protein within the cell wall structure were studied in the corresponding mutants. The homozygous mutant showed that GCA1 was not an essential gene for cell viability. Subsequent phenotypic analysis performed in the mutants obtained did not show significant difference in the behavior of mutant when compared with the wild strain SC5314. Zymoliase, Calco…
Toxicological implications of enzymatic control of reactive metabolites.
1990
Many foreign compounds are transformed into reactive metabolites, which may produce genotoxic effects by chemically altering critical biomolecules. Reactive metabolites are under the control of activating, inactivating and precursor sequestering enzymes. Such enzymes are under the long-term control of induction and repression, as well as the short-term control of post-translational modification and low molecular weight activators or inhibitors. In addition, the efficiency of these enzyme systems in preventing reactive metabolite-mediated toxicity is directed by their subcellular compartmentalization and isoenzymic multiplicity. Extrapolation from toxicological test systems to the human req…
Role of saccharomyces cerevisiae nutrient signaling pathways during winemaking: a phenomics approach
2020
The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyze…
Histones, Their Variants and Post-translational Modifications in Zebrafish Development.
2020
Complex multi-cellular organisms are shaped starting from a single-celled zygote, owing to elaborate developmental programs. These programs involve several layers of regulation to orchestrate the establishment of progressively diverging cell type-specific gene expression patterns. In this scenario, epigenetic modifications of chromatin are central in influencing spatiotemporal patterns of gene transcription. In fact, it is generally recognized that epigenetic changes of chromatin states impact on the accessibility of genomic DNA to regulatory proteins. Several lines of evidence highlighted that zebrafish is an excellent vertebrate model for research purposes in the field of developmental ep…
Molecular docking-based virtual drug screening revealing an oxofluorenyl benzamide and a bromonaphthalene sulfonamido hydroxybenzoic acid as HDAC6 in…
2020
HDAC6 is a crucial epigenetic modifier that plays a vital role in tumor progression and carcinogenesis due to its multiple biological functions. It is a unique member of class-II HDAC enzymes. It possesses two catalytic domains, which function independently of the overall enzyme activity. Up to date, there are only a few selective HDAC6 inhibitors with anti-cancer activity. In this study, 175,204 ligands obtained from the ZINC15 and OTAVAchemical databases were used for virtual drug screening against HDAC6. Molecular docking studies were performed for 100 selected compounds. Furthermore, the top 10 compounds obtained from docking were tested for their efficacy to inhibit the function of HDA…
Analysis of substrate binding in individual active sites of bifunctional human ATIC
2018
Aminoimidazolecarboxamide ribonucleotide formyl transferase (AICARFT): Inosine monophosphate cyclohydrolase (IMPCH, collectively called ATIC) is a bifunctional enzyme that catalyses the penultimate and final steps in the purine de novo biosynthesis pathway. The bifunctional protein is dimeric and each monomer contains two different active sites both of which are capable of binding nucleotide substrates, this means to a potential total of four distinct binding events might be observed. Within this work we used a combination of site-directed and truncation mutants of ATIC to independently investigate the binding at these two sites using calorimetry. A single S10W mutation is sufficient to blo…
Development of enzymatically-active bacterial cellulose membranes through stable immobilization of an engineered beta-galactosidase
2018
Enzymatically-active bacterial cellulose (BC) was prepared by non-covalent immobilization of a hybrid enzyme composed by a β-galactosidase from Thermotoga maritima (TmLac) and a carbohydrate binding module (CBM2) from Pyrococcus furiosus. TmLac-CBM2 protein was bound to BC, with higher affinity at pH 6.5 than at pH 8.5 and with high specificity compared to the non-engineered enzyme. Both hydrated (HBC) and freeze-dried (DBC) bacterial cellulose showed equivalent enzyme binding efficiencies. Initial reaction rate of HBC-bound enzyme was higher than DBC-bound and both of them were lower than the free enzyme. However, enzyme performance was similar in all three cases for the hydrolysis of 5% l…
Feedback Regulation of Syk by Protein Kinase C in Human Platelets
2019
The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIb&alpha
SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle
2020
Objective To determine the susceptibility of the endometrium to infection by—and thereby potential damage from—SARS-CoV-2. Design Analysis of SARS-Cov-2 infection-related gene expression from endometrial transcriptomic data sets. Setting Infertility research department affiliated with a public hospital. Patient(s) Gene expression data from five studies in 112 patients with normal endometrium collected throughout the menstrual cycle. Intervention(s) None. Main Outcome Measure(s) Gene expression and correlation between viral infectivity genes and age throughout the menstrual cycle. Result(s) Gene expression was high for TMPRSS4, CTSL, CTSB, FURIN, MX1, and BSG; medium for TMPRSS2; and low for…