Search results for "ENZYME"

showing 10 items of 3924 documents

Wine Fermentation

2019

Currently wineries are facing new challenges due to actual market demands for creation of products exhibiting more individual flavors[...]

0106 biological scienceslcsh:TP500-660oenological enzymes<i>Lachancea</i>color intensityyeast hybrids04 agricultural and veterinary sciencesPlant Scienceprocess controllcsh:Fermentation industries. Beverages. Alcohol040401 food science01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)metabolomics0404 agricultural biotechnologyextraction methods010608 biotechnologyphenolic content<i>Saccharomyces</i>sulfur compoundsFood ScienceFermentation
researchProduct

The Plant Inorganic Pyrophosphatase Does Not Transport K+ in Vacuole Membrane Vesicles Multilabeled with Fluorescent Probes for H+, K+, and Membrane …

1995

Abstract It has been claimed that the inorganic pyrophosphatase (PPase) of the plant vacuolar membrane transports K+ in addition to H+ in intact vacuoles (Davies, J. M., Poole, R. J., Rea, P. A., and Sanders, D.(1992) Proc. Natl. Acad. Sci. U. S. A. 89, 11701-11705). Since this was not confirmed using the purified and reconstituted PPase consisting of a 75-kDa polypeptide (Sato, M. H., Kasahara, M., Ishii, N., Homareda, H., Matsui, H., and Yoshida, M. (1994) J. Biol. Chem. 269, 6725-6728), these authors proposed that K+ transport by the PPase is dependent on its association with other membrane components lost during purification. We have examined the hypothesis of K+ translocation by the PP…

0106 biological sciencespyrophosphataseProtonophoreIonophoreVacuole01 natural sciencesBiochemistryPyrophosphateMembrane Potentials03 medical and health scienceschemistry.chemical_compoundValinomycinvitis viniferahydrolyseion potassiumtransport membranaire[SDV.BBM.BC]Life Sciences [q-bio]/Biochemistry Molecular Biology/Biochemistry [q-bio.BM]PyrophosphatasesMolecular BiologyComputingMilieux_MISCELLANEOUSFluorescent Dyes030304 developmental biologyionophoreMembrane potential0303 health sciencesInorganic pyrophosphatasemembrane vacuolaireIon TransportVesicleIntracellular MembranesCell BiologyPlantsEnzyme ActivationInorganic PyrophosphataseBiochemistrychemistrypotentiel membranaireVacuolesPotassiumBiophysicsProtonsvigneHydrogen010606 plant biology & botanyJournal of Biological Chemistry
researchProduct

BIOCLEANING

2017

Cleaning is one of the first and most important steps in conservative restora- tion intervention, as it removes the unwanted layers of dirt and deposit from the surface of an artefact. It must be done selectively, however, by adapting the cleaning operation to the different zones and removing successive layers of deposit without acting directly on the original materials of the surface. Generally, cleaning protocols are based on chemical or physical procedures with potential negative effects for restorers’ health and/or for the materials constituting the artworks. As an alternative, solvent gels, rigid gels and resin soaps can be used for selective cleaning. In recent decades, biological cle…

020401 chemical engineering010401 analytical chemistrySettore BIO/03 - Botanica Ambientale E Applicata02 engineering and technology0204 chemical engineering01 natural sciencesEnzymes Viable bacterial cells Suphate - Nitrate crusts0104 chemical sciences
researchProduct

Generation of oxysterols formed by free radicals and enzymes by electrochemical oxidation

2016

International audience; It is commonly accepted that cholesterol oxide derivatives, also named oxysterols, are 27 carbon-atom molecules deriving either from enzymatic and non-enzymatic oxidation of cholesterol. Most of these compounds can be synthesized by more or less difficult and time consuming chemical reactions, and some of them have been discovered before the identification of the enzymes [mainly cytochrome P450 enzymes (CYP enzymes)] involved in their biosynthesis. A wide range of biological activities depends on oxysterols. Some oxysterols are also involved in the synthesis of cholesterol metabolites which have various properties. The paper by Weber et al. in this issue of European …

0301 basic medicine030103 biophysicsRadical[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionChemical reactionIndustrial and Manufacturing EngineeringEditorial Material03 medical and health scienceschemistry.chemical_compoundBiosynthesisIn vivopolycyclic compoundsMoleculechemistry.chemical_classificationbiologyCholesterolCytochrome P450General ChemistryOxysterols[SDV.AEN] Life Sciences [q-bio]/Food and NutritionEnzymeElectrochemical oxidationchemistryBiochemistrybiology.proteinlipids (amino acids peptides and proteins)Food ScienceBiotechnology
researchProduct

Recent advances inγ-aminobutyric acid (GABA) properties in pulses: an overview

2017

Beans, peas, and lentils are all types of pulses that are extensively used as foods around the world due to their beneficial effects on human health including their low glycaemic index, cholesterol lowering effects, ability to decrease the risk of heart diseases and their protective effects against some cancers. These health benefits are a result of their components such as bioactive proteins, dietary fibre, slowly digested starches, minerals and vitamins, and bioactive compounds. Among these bioactive compounds, γ-aminobutyric acid (GABA), a non-proteinogenic amino acid with numerous reported health benefits (e.g. anti-diabetic and hypotensive effects, depression and anxiety reduction) is …

0301 basic medicine2. Zero hungerchemistry.chemical_classification030109 nutrition & dieteticsNutrition and DieteticsDecarboxylationGlutamate decarboxylase04 agricultural and veterinary sciencesBiology040401 food scienceAminobutyric acid3. Good healthAmino acidLactic acid03 medical and health scienceschemistry.chemical_compound0404 agricultural biotechnologyEnzymechemistryPhytochemicalBiochemistryFermentationAgronomy and Crop ScienceFood ScienceBiotechnologyJournal of the Science of Food and Agriculture
researchProduct

2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors

2016

International audience; 2,3-Dihydrobenzofurans are proposed as privileged structures and used as chemical platform to design small compound libraries. By combining molecular docking calculations and experimental verification of biochemical interference, we selected some potential inhibitors of microsomal prostaglandin E2 synthase (mPGES)-1. Starting from low affinity natural product 1, by our combined approach we identified the compounds 19 and 20 with biological activity in the low micromolar range. Our data suggest that the 2,3-dihydrobenzofuran derivatives might be suitable bioinspired lead compounds for development of new generation mPGES-1 inhibitors with increased affinity.

0301 basic medicine300323-Dihydrobenzofuran privileged structure; Cancer; Inflammation; Molecular docking; mPGES-1 inhibitors; Biochemistry; Clinical Biochemistry; Molecular Biology; Molecular Medicine; Organic Chemistry; Drug Discovery3003 Pharmaceutical Science; 3003Amino Acid MotifsClinical BiochemistryGene ExpressionPharmaceutical Science01 natural sciencesClinical biochemistryBiochemistry[ CHIM ] Chemical SciencesProtein Structure Secondary[ SDV.CAN ] Life Sciences [q-bio]/Cancerchemistry.chemical_compoundLow affinityDrug DiscoveryEnzyme Inhibitors23-Dihydrobenzofuran privileged structure; Molecular docking; mPGES-1 inhibitors; Cancer; InflammationProstaglandin-E SynthasesCancerAnti-Inflammatory Agents Non-SteroidalBiological activityProto-Oncogene Proteins c-metIntramolecular OxidoreductasesMolecular Docking SimulationMolecular dockingMolecular Medicinelipids (amino acids peptides and proteins)Cell SurvivalStereochemistryMolecular Sequence Data2Antineoplastic Agents[SDV.CAN]Life Sciences [q-bio]/Cancer3-Dihydrobenzofuran privileged structureInhibitory Concentration 50Structure-Activity Relationship03 medical and health sciencesCell Line TumorMicrosomesHumans[CHIM]Chemical SciencesMolecular BiologyBenzofuransInflammationNatural product010405 organic chemistryDrug Discovery3003 Pharmaceutical ScienceOrganic ChemistryEpithelial CellsmPGES-1 inhibitorsCombinatorial chemistryCombined approach0104 chemical sciences030104 developmental biologychemistryDrug DesignDrug Screening Assays Antitumor
researchProduct

Synergistic activation of AMPK prevents from polyglutamine-inducedtoxicity inCaenorhabditis elegans

2020

11 páginas, 4 figuras. Supplementary material related to this article can be found, in the online version, at doi: https://doi.org/10.1016/j.phrs.2020.105105.

0301 basic medicineAMPKProtein subunitMutantEnzyme ActivatorsAMP-Activated Protein KinasesProtein Serine-Threonine KinasesProtein Aggregation PathologicalpolyQ toxicityArticleAnimals Genetically ModifiedProtein Aggregates03 medical and health sciences0302 clinical medicineRNA interferenceAutophagymedicineAnimalsAMPK Caenorhabditis elegans Metformin Salycilate Synergy polyQ toxicityCaenorhabditis elegans ProteinsCaenorhabditis elegansLoss functionCaenorhabditis elegansNeuronsPharmacologybiologyChemistrySalycilateAutophagyAMPKDrug Synergismbiology.organism_classificationSalicylatesMetforminCell biologyMetforminEnzyme ActivationSynergy030104 developmental biology030220 oncology & carcinogenesisMutationProteostasisPeptidesmedicine.drug
researchProduct

Mechanics Insights of Alpha-Lipoic Acid against Cardiovascular Diseases during COVID-19 Infection

2021

Coronavirus disease 2019 (COVID-19) was first reported in Wuhan, China, in late December 2019. Since then, COVID-19 has spread rapidly worldwide and was declared a global pandemic on 20 March 2020. Cardiovascular complications are rapidly emerging as a major peril in COVID-19 in addition to respiratory disease. The mechanisms underlying the excessive effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities remain only partly understood. SARS-CoV-2 infection is caused by binding of the viral surface spike (S) protein to the human angiotensin-converting enzyme 2 (ACE2), followed by the activation of the S protein by transme…

0301 basic medicineARDSEndotheliumQH301-705.5InflammationReviewmedicine.disease_causeCatalysisAntioxidantsProinflammatory cytokineInorganic Chemistry03 medical and health sciences0302 clinical medicinecardiovascular diseasemedicineoxidative stressAnimalsHumansPhysical and Theoretical ChemistryEndothelial dysfunctionBiology (General)Molecular BiologyQD1-999SpectroscopyThioctic Acidbusiness.industrySARS-CoV-2alpha-lipoic acidOrganic ChemistryRespiratory diseaseCOVID-19Endothelial CellsGeneral Medicinemedicine.diseaseComputer Science ApplicationsCOVID-19 Drug TreatmentChemistry030104 developmental biologymedicine.anatomical_structureinflammationCardiovascular Diseases030220 oncology & carcinogenesisImmunologyAngiotensin-Converting Enzyme 2medicine.symptombusinessCytokine stormCytokine Release SyndromeOxidative stressInternational Journal of Molecular Sciences
researchProduct

Epimagnolin A, a tetrahydrofurofuranoid lignan from Magnolia fargesii, reverses ABCB1-mediated drug resistance.

2018

Abstract Background Epimagnolin A is an ingredient of the Chinese crude drug Shin-i, derived from the dried flower buds of Magnolia fargesii and Magnolia flos, which has been traditionally used for the treatment of allergic rhinitis and nasal congestion, empyema, and sinusitis. The pharmacokinetic activity of epimagnolin A remains to be evaluated. Purpose In this study, we examined the possible interactions of epimagnolin A with human ATP-binding cassette (ABC) transporter ABCB1, a membrane protein vital in regulating the pharmacokinetics of drugs and xenobiotics. Study design/methods The interaction of epimagnolin A with ABCB1 was evaluated in calcein, ATPase, and MTT assays by using Flp-I…

0301 basic medicineATP Binding Cassette Transporter Subfamily BATPasePharmaceutical ScienceATP-binding cassette transporterPharmacologyCrude drugLignans03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePharmacokineticsCell Line TumorDrug DiscoverymedicineHumansEnzyme kineticsP-glycoproteinPharmacologyAdenosine TriphosphatasesbiologyAntineoplastic Agents PhytogenicDrug Resistance MultipleCalceinMolecular Docking Simulation030104 developmental biologyComplementary and alternative medicinechemistryVerapamilDrug Resistance NeoplasmMagnolia030220 oncology & carcinogenesisbiology.proteinMolecular MedicineVerapamilmedicine.drugPhytomedicine : international journal of phytotherapy and phytopharmacology
researchProduct

Evaluation of an amino acid residue critical for the specificity and activity of human Gb3/CD77 synthase

2016

Human Gb3/CD77 synthase (α1,4-galactosyltransferase) is the only known glycosyltransferase that changes acceptor specificity because of a point mutation. The enzyme, encoded by A4GALT locus, is responsible for biosynthesis of Gal(α1–4)Gal moiety in Gb3 (CD77, Pk antigen) and P1 glycosphingolipids. We showed before that a single nucleotide substitution c.631C > G in the open reading frame of A4GALT, resulting in replacement of glutamine with glutamic acid at position 211 (substitution p. Q211E), broadens the enzyme acceptor specificity, so it can not only attach galactose to another galactose but also to N-acetylgalactosamine. The latter reaction leads to synthesis of NOR antigens, which are…

0301 basic medicineAcetylgalactosamineMutation MissenseBiochemistryGlycosphingolipidsSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundGb3/CD77 synthaseBiosynthesisCell Line TumorGlycosyltransferaseAspartic acidHumansAsparagineSite-directed mutagenesisMolecular BiologySite-directed mutagenesisbiologyAntigens NuclearGlutamic acidCell BiologyGalactosyltransferasesMolecular biologyEnzyme assayGlutamineP1PK blood group system030104 developmental biologyAmino Acid SubstitutionBiochemistrychemistryGlycopshingolipidsbiology.proteinNOR polyagglutinationOriginal ArticleGlycoconjugate Journal
researchProduct