Search results for "EPOXY"

showing 10 items of 384 documents

Effects of Nylon 6,6 Nanofibrous Mats on Thermal Properties and Delamination Behavior of High Performance CFRP Laminates

2014

none 8 no Nylon 6,6 electrospun nanofibrous membranes interleaved in Carbon Fibre Reinforced Plastic (CFRP) laminates have been proposed as a means to provide a higher threshold value to delamination on structural sites where composites are more prone to develop such failure. A model, highly crosslinked thus inherently brittle, epoxy matrix was selected for its high Young’s modulus and glass transition temperature exceeding 250 °C. The influence of the Nylon 6,6 nanofibres on the curing behaviour of the matrix and on the thermal and dynamic mechanical properties of the cured resin was investigated. These properties were related to the features of the epoxy resin and of the resin impregnated…

Materials sciencePOLYMERIC NANOFIBERSPolymers and Plasticselectronspun nanofibrous matModuluschemistry.chemical_compoundSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineBrittlenessFracture toughnessPOLYMER–MATRIX COMPOSITES (PMCS)Materials ChemistryPOLYMERIC NANOFIBERS; DELAMINATION; THERMAL PROPERTIES; POLYMER–MATRIX COMPOSITES (PMCS)Composite materialCuring (chemistry)Carbon fiber reinforced polymerthermal propertiedelamination fracture toughnessDELAMINATIONGeneral ChemistryEpoxyComposite laminatesNylon 6chemistryvisual_artCeramics and Compositesvisual_art.visual_art_mediumTHERMAL PROPERTIESSettore CHIM/07 - Fondamenti Chimici Delle TecnologieCFRP laminate
researchProduct

Fracture Toughness of Hydrothermally Aged Epoxy Systems with Different Crosslink Density

2015

Abstract The present work investigates the fracture toughness behaviour of Single Edge Notched Bending (SENB) samples of epoxy systems subject to water uptake aging. Two epoxy systems with a significantly different Glass Transition Temperature, T g , are in particular considered: a typical commercial non-aeronautical grade resin matrix for composite applications, reaching a T g of 90 °C, and a DGEBA+DDS epoxy system achieving a T g of 230 °C.The materials have been conditioned by hydrothermal aging in a thermal bath at the temperature of 50 °C. TransmissionPhotoelastic Stress Analysisis carried outon SENB samples during water aging, monitoring the presence and evolution of swelling stresses…

Materials sciencePhotoelastic Stress AnalysiImage AnalysiComposite numberPhotoelastic Stress AnalysisStress (mechanics)Thermosetting ResinFracture toughnessEngineering (all)Fracture ToughnessHydrothermal AgingFracture Toughness; Hydrothermal Aging; Image Analysis; Photoelastic Stress Analysis; Swelling Stresses; Thermosetting Resin; Engineering (all)Composite materialEngineering(all)Image Analysis.General MedicineEpoxyDynamic mechanical analysisFracture ToughneSwelling StresseSwelling Stressesvisual_artvisual_art.visual_art_mediumFracture (geology)Gravimetric analysisGlass transition
researchProduct

Conductive cooling in white organic light emitting diode for enhanced efficiency and life time

2015

We demonstrate white organic light emitting diodes with enhanced efficiency (26.8 lm/W) and life time (∼11 000 h) by improved heat dissipation through encapsulation composed of a metal (Cu, Mo, and Al) and mica sheet joined using thermally conducting epoxy. Finite element simulation is used to find effectiveness of these encapsulations for heat transfer. Device temperature is reduced by about 50% with the encapsulation. This, consequently, has improved efficiency and life time by about 30% and 60%, respectively, with respect to glass encapsulation. Conductive cooling of device is suggested as the possible cause for this enhancement.

Materials sciencePhysics and Astronomy (miscellaneous)business.industrychemistry.chemical_elementEpoxyCopperchemistryMolybdenumAluminiumvisual_artHeat transferOLEDvisual_art.visual_art_mediumOptoelectronicsMicabusinessElectrical conductorApplied Physics Letters
researchProduct

Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment

2019

Abstract Aim of the current study is to investigate how an innovative and eco-friendly chemical treatment based on sodium bicarbonate solution (10 wt%) can improve the aging resistance in marine environment of epoxy based composites, reinforced with flax and jute fibers. To this scope, treated and untreated fiber reinforced composites were manufactured through vacuum infusion technique. The resulting composites were then exposed to salt-fog spray conditions up to 60 days, according to ASTM B117 standard. The assessment of their durability was made by means of tensile, flexural quasi-static tests and Charpy impact tests. Furthermore, the water uptake evolution of each composite was monitored…

Materials sciencePolymers and PlasticsCharpy impact test02 engineering and technologyFiber-reinforced composite010402 general chemistry01 natural sciencesJutechemistry.chemical_compoundFlexural strengthFlaxUltimate tensile strengthSalt-fog expositionComposite materialSodium bicarbonate treatmentNatural fiberMarine environmentSodium bicarbonateOrganic ChemistryEpoxy021001 nanoscience & nanotechnologyDurabilityFlax; Green composites; Jute; Marine environment; Salt-fog exposition; Sodium bicarbonate treatment0104 chemical scienceschemistryvisual_artvisual_art.visual_art_mediumGreen composite0210 nano-technology
researchProduct

Pinned hybrid glass-flax composite laminates aged in salt-fog environment: Mechanical durability

2019

The aim of the present paper is to study the mechanical performance evolution of pinned hybrid glass-flax composite laminates under environment aging conditions. Hybrid glass-flax fibers/epoxy pinned laminates were exposed to salt-spray fog environmental conditions up to 60 days. With the purpose of assessing the relationship between mechanical performances and failure mechanisms at increasing aging time, single lap joints at varying joint geometry (i.e., hole diameter D and hole distance E from free edge) were characterized after 0 days (i.e., unaged samples), 30 days, and 60 days of salt-fog exposition. Based on this approach, the property&ndash

Materials sciencePolymers and PlasticsComposite number02 engineering and technologyBearing; Failure modes; Glass-flax hybrid coposites; Pinned joints; Salt fog aging010402 general chemistry01 natural sciencesFailure modesArticlelcsh:QD241-441lcsh:Organic chemistryFlexural strengthGlass-flax hybrid copositesComposite materialJoint (geology)Natural fiberPinned jointsFailure modeGeneral ChemistryEpoxyComposite laminates021001 nanoscience & nanotechnologyDurabilityGlass-flax hybrid compositePinned joint0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiLap jointSalt fog agingvisual_artBearingvisual_art.visual_art_medium0210 nano-technology
researchProduct

New concept in bioderived composites: Biochar as toughening agent for improving performances and durability of agave-based epoxy biocomposites

2021

Biocomposites are increasingly used in the industry for the replacement of synthetic materials, thanks to their good mechanical properties, being lightweight, and having low cost. Unfortunately, in several potential fields of structural application their static strength and fatigue life are not high enough. For this reason, several chemical treatments on the fibers have been proposed in literature, although still without fully satisfactory results. To overcome this drawback, in this study we present a procedure based on the addition of a carbonaceous filler to a green epoxy matrix reinforced by Agave sisalana fibers. Among all carbon-based materials, biochar was selected for its environment…

Materials sciencePolymers and PlasticsCompression molding02 engineering and technologyengineering.material010402 general chemistry01 natural sciencesArticlelcsh:QD241-441Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchinelcsh:Organic chemistryAgaveThermoset compositesFiller (materials)Ultimate tensile strengthBiocharFiberComposite materialFatigueagave; biochar; thermoset composites; fatigueGeneral ChemistryEpoxy021001 nanoscience & nanotechnologyDurability0104 chemical sciencesBiocharvisual_artengineeringvisual_art.visual_art_mediumBiocomposite0210 nano-technology
researchProduct

Adhesive joining of Aluminum AA6082: the effect of resin and surface treatment

2009

Abstract In this work the effects of both the substrate surface condition and the adhesive properties on single-lap aluminium joint resistance were analysed. The aluminium sheets were mechanically treated with two abrasive surfaces evaluating the induced roughness; four different resins were used in adhesion tests. Moreover, wettability tests were performed in order to evaluate the effect of the above-mentioned parameters on the substrate/adhesive interaction. A design of experiments was defined in order to quantify the effect of the considered factors and their correlation.

Materials sciencePolymers and PlasticsGeneral Chemical EngineeringAbrasiveInterfacesSurface treatmentchemistry.chemical_elementSurface finishEpoxyAdhesionAluminium and alloys Interface Surface roughness/morphology Surface treatment Lap-shearBiomaterialsAluminum and alloys; Interfaces; Surface roughness/morphology; Surface treatment; Lap-shearchemistryAluminiumvisual_artAluminium alloyvisual_art.visual_art_mediumLap-shearWettingAdhesiveComposite materialSurface roughness/morphologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneAluminum and alloys
researchProduct

Effects of anodizing surface treatment on the mechanical strength of aluminum alloy 5083 to fibre reinforced composites adhesive joints

2021

Abstract In this study, the anodizing process based on the use of tartaric sulfuric acid solution (TSA) was carried out on metal substrate to evaluate for the first time its effect on the adhesion strength and corrosion resistance of aluminium alloy (i.e., AA5083) to fibre (i.e., basalt or glass) reinforced composite adhesive joints for nautical applications. Furthermore, some TSA anodized samples were soaked in a NaOH solution to investigate the influence of this post-immersion step on the joint performances. With the aim to improve the fibre-matrix adhesion in the composite substrate thus further increasing the overall mechanical response of the joint, glass and basalt fibres were treated…

Materials sciencePolymers and PlasticsGeneral Chemical EngineeringAlloychemistry.chemical_element02 engineering and technologyengineering.materialCorrosionBiomaterials03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAluminiumUltimate tensile strengthAluminium alloyComposite materialAnodizingtechnology industry and agriculture030206 dentistryEpoxy021001 nanoscience & nanotechnologySilaneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiSettore ING-IND/23 - Chimica Fisica Applicatachemistryvisual_artAdhesive joint Anodizing Basalt Corrosion resistance Silane coupling agent Surface treatmentvisual_art.visual_art_mediumengineering0210 nano-technologyInternational Journal of Adhesion and Adhesives
researchProduct

Stress-Strain State in the Zone of Load Transfer in a Composite Specimen under Uniaxial Tension

2004

The stress-strain state in the zone of load transfer in a uniaxially stretched specimen made of a unidirectional epoxy carbon-fiber-reinforced plastic (CFRP) is investigated. A parametric analysis of the influence of geometric and mechanical characteristics of the specimen on its stress-strain state is performed by means of finite-element modeling. The parameters allowing us to significantly reduce the dangerous concentration of transverse and tangential stresses are revealed. The mechanical tensile characteristics of a high-strength pultruded unidirectional CFRP are determined experimentally, and the size effect of its strength is estimated.

Materials sciencePolymers and PlasticsGeneral MathematicsComposite numberStress–strain curveEpoxyCondensed Matter PhysicsFinite element methodBiomaterialsTransverse planeMechanics of MaterialsPultrusionvisual_artUltimate tensile strengthSolid mechanicsCeramics and Compositesvisual_art.visual_art_mediumComposite materialMechanics of Composite Materials
researchProduct

Progressive cracking mastercurves of the transverse ply in a laminate

2009

In this study, progressive cracking of a transverse layer in a cross-ply composite laminate subjected to tensile loading is considered. Using the results of a probabilistic cracking model, approximate relations for crack density as a function of stress are derived for initiation-controlled and propagation-controlled cracking. It is shown that the crack density evolution in the transverse ply can be represented by a mastercurve in suitably normalized coordinates. The mastercurve approach is applied to progressive cracking in glass/epoxy laminates. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers

Materials sciencePolymers and PlasticsGlass fiberComposite numberFracture mechanicsGeneral ChemistryEpoxyStress (mechanics)CrackingTransverse planevisual_artUltimate tensile strengthMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumComposite materialPolymer Composites
researchProduct