Search results for "EPS"

showing 10 items of 1777 documents

New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated acti…

2021

International audience; Purpose: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority.Methods: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC.Results: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-ass…

0301 basic medicine[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyWAVEregulatory complex (WRC)030105 genetics & heredityBiologyArticleIntellectual disability; Epilepsy; CYFIP2; WAVE-regulatory complex (WRC); WASF03 medical and health sciencesNeurodevelopmental disorderSeizuresWAVE-regulatory complex (WRC)medicineCYFIP2Missense mutationHumansGenetics(clinical)WASFGeneGenetics (clinical)ActinAdaptor Proteins Signal TransducingGenetics/dk/atira/pure/subjectarea/asjc/2700/2716medicine.diseaseActin cytoskeletonPhenotypeHypotoniaActins3. Good healthddc:030104 developmental biology[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisNeurodevelopmental Disordersintellectual disabilityCYFIP2epilepsymedicine.symptom
researchProduct

Sympatric Ixodes-tick species: pattern of distribution and pathogen transmission within wild rodent populations

2018

AbstractThe generalist tick Ixodes ricinus is the most important vector for tick-borne pathogens (TBP), including Borrelia burgdorferi sensu lato, in Europe. However, the involvement of other sympatric Ixodes ticks, such as the specialist vole tick I. trianguliceps, in the enzootic circulations of TBP remains unclear. We studied the distribution of I. ricinus and I. trianguliceps in Central Finland and estimated the TBP infection likelihood in the most common rodent host in relation with the abundance of the two tick species. Ixodes trianguliceps was encountered in all 16 study sites whereas I. ricinus was frequently observed only at a quarter of the study sites. The abundance of I. ricinus…

0301 basic medicineanimal diseaseslcsh:MedicineDisease VectorspuutiaisetBORRELIA-BURGDORFERI0302 clinical medicinepopulaatiotSCAPULARIS ACARIpathogen transmissionlcsh:ScienceFinlandMultidisciplinarybiologyArvicolinaeRicinuslevinneisyysBORNE ENCEPHALITIS-VIRUSSympatrytaudinaiheuttajatTick-Borne DiseasesANAPLASMA-PHAGOCYTOPHILUMEnzooticIxodes ricinusjyrsijät030231 tropical medicineZoologyLYME BORRELIOSISTickTRIANGULICEPSArticle03 medical and health sciencesIxodes triangulicepsparasitic diseasesAnimalsHumansBorrelia burgdorferiIxodesBABESIA-MICROTILAND-USELANDSCAPEfungilcsh:Rbiology.organism_classificationbacterial infections and mycosesBorrelia-bakteerit030104 developmental biologyRICINUS TICKSVoleIxodeslcsh:Q3111 BiomedicineScientific Reports
researchProduct

Targeting of the Leishmania Mexicana cysteine protease CPB2.8 ΔCTE by decorated fused benzo[b] thiophene scaffold.

2016

A potent and highly selective anhydride-based inhibitor of Leishmania mexicana cysteine protease CPB2.8ΔCTE (IC50 = 3.7 μM) was identified. The details of the interaction of the ligand with the enzyme active site were investigated by NMR biomimetic experiments and docking studies. Results of inhibition assays, NMR and theoretical studies indicate that the ligand acts initially as a non-covalent inhibitor and later as an irreversible covalent inhibitor by chemoselective attack of CYS 25 thiolate to an anhydride carbonyl.

0301 basic medicinebiology010405 organic chemistryChemistryStereochemistryGeneral Chemical EngineeringActive siteGeneral ChemistryHighly selectivebiology.organism_classification01 natural sciencesCysteine proteaseLeishmania mexicana0104 chemical sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyCovalent bondDocking (molecular)biology.proteinThiopheneDRUG DISCOVERY SOFTWARE NEWS FORCE-FIELD CATHEPSIN-L INHIBITORS OPTIMIZATION TRYPANOSOMIASIS IDENTIFICATION PROTEINASES VALIDATIONIC50
researchProduct

Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders

2018

24 p.-2 fig.-2 tab.-1 fig. supl.-1 tab.supl.

0301 basic medicinebiologyMolecular massChemistryExopolysaccharides (EPS)030106 microbiologyFood spoilagebiology.organism_classificationlaw.inventionLactic acidHomopolysaccharide03 medical and health scienceschemistry.chemical_compoundLactobacillusCiderslawLactobacillusRopy isolatesFermentationFood sciencePolymerase chain reactionBacteriaFood Science
researchProduct

Hierarchical architecture of sponge spicules: biocatalytic and structure-directing activity of silicatein proteins as model for bioinspired applicati…

2016

Since the first description of the silicateins, a group of enzymes that mediate the formation of the amorphous, hydrated biosilica of the skeleton of the siliceous sponges, much progress has been achieved in the understanding of this biomineralization process. These discoveries include, beside the proof of the enzymatic nature of the sponge biosilica formation, the dual property of the enzyme, to act both as a structure-forming and structure-guiding protein, and the demonstration that the initial product of silicatein is a soft, gel-like material that has to undergo a maturation process during which it achieves its favorable physical-chemical properties allowing the development of various t…

0301 basic medicinebiologyProtein ConformationChemistryBiophysicsNanotechnologybiology.organism_classificationCathepsinsBiochemistryPorifera03 medical and health sciencesSponge030104 developmental biologySponge spiculeBiomimetic MaterialsAnimalsMolecular MedicineMaturation processEngineering (miscellaneous)BiotechnologyBiomineralizationBioinspiration & Biomimetics
researchProduct

In response: Neuronal networks in epileptic encephalopathies with CSWS

2017

0301 basic medicinebusiness.industryElectroencephalographyBrain Waves03 medical and health sciences030104 developmental biology0302 clinical medicineText miningNeurologyMedicineEpilepsy GeneralizedNeurology (clinical)businessNeuroscience030217 neurology & neurosurgeryEpilepsia
researchProduct

Alexander Disease Mutations Produce Cells with Coexpression of Glial Fibrillary Acidic Protein and NG2 in Neurosphere Cultures and Inhibit Differenti…

2017

Background Alexander disease (AxD) is a rare disease caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). The disease is characterized by presence of GFAP aggregates in the cytoplasm of astrocytes and loss of myelin. Objectives Determine the effect of AxD-related mutations on adult neurogenesis. Methods We transfected different types of mutant GFAP into neurospheres using the nucleofection technique. Results We find that mutations may cause coexpression of GFAP and NG2 in neurosphere cultures, which would inhibit the differentiation of precursors into oligodendrocytes and thus explain the myelin loss occurring in the disease. Transfection produces cells that diff…

0301 basic medicinecaspase-3Cathepsin Dmacromolecular substancesHSP27lcsh:RC346-429oligodendrocyte precursors03 medical and health sciencesMyelin0302 clinical medicineAlexander diseaseNG2Neurosphereneurospheresmedicinecathepsinlcsh:Neurology. Diseases of the nervous systemOriginal ResearchGlial fibrillary acidic proteinbiologyNeurogenesisNestinGFAP stainmedicine.diseaseMolecular biologyAlexander disease030104 developmental biologymedicine.anatomical_structurenervous systemNeurologyglial fibrillary acidic proteinbiology.proteinNeurology (clinical)030217 neurology & neurosurgeryNeuroscienceFrontiers in Neurology
researchProduct

Disruption of otoferlin alters the mode of exocytosis at the mouse inner hair cell ribbon synapse

2019

Sound encoding relies on Ca2+-mediated exocytosis at the ribbon synapse between cochlear inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Otoferlin, a multi-C-2 domain protein, is proposed to regulate Ca2+-triggered exocytosis at this synapse, but the precise mechanisms of otoferlin function remain to be elucidated. Here, performing whole-cell voltage-clamp recordings of excitatory postsynaptic currents (EPSCs) from SGNs in otoferlin mutant mice, we investigated the impact of Otof disruption at individual synapses with single release event resolution. Otof deletion decreased the spontaneous release rate and abolished the stimulus-secretion coupling. This was evident from f…

0301 basic medicinecochleaRibbon synapsehair cellExocytosislcsh:RC321-571Synapse03 medical and health sciencesCellular and Molecular Neuroscienceotoferlin0302 clinical medicinemedicineOTOFauditoryMolecular Biologylcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySpiral ganglionOriginal Researchribbon synapsecalciumChemistryDepolarizationCell biology030104 developmental biologymedicine.anatomical_structureEPSCExcitatory postsynaptic potentialHair cellspiral ganglion neuron030217 neurology & neurosurgeryNeuroscience
researchProduct

Hippocampal hyperexcitability is modulated by microtubule-active agent: evidence from in vivo and in vitro epilepsy models in the rat

2016

The involvement of microtubule dynamics on bioelectric activity of neurons and neurotransmission represents a fascinating target of research in the context of neural excitability. It has been reported that alteration of microtubule cytoskeleton can lead to profound modifications of neural functioning, with a putative impact on hyperexcitability phenomena. Altogether, in the present study we pointed at exploring the outcomes of modulating the degree of microtubule polymerization in two electrophysiological epileptiform activity in the rat hippocampus. To this aim, we used in vivo Maximal Dentate Activation (MDA) and in vitro hippocampal epileptiform bursting activity (HEBA) paradigms to asse…

0301 basic medicinehippocampusPaclitaxel.HippocampusContext (language use)BiologyNeurotransmissionHippocampal formationSettore BIO/09 - Fisiologialcsh:RC321-571Microtubule polymerization03 medical and health sciencesCellular and Molecular Neurosciencechemistry.chemical_compoundpaclitaxel0302 clinical medicineMicrotubulemedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatryOriginal ResearchNeurotoxicitymedicine.diseaseelectrophysiologyNocodazole030104 developmental biologynocodazolechemistryepilepsyhippocampus epilepsy maximal dentate activation microtubule electrophysiology nocodazole paclitaxel.maximal dentate activationNeuroscience030217 neurology & neurosurgeryNeurosciencemicrotubule
researchProduct

A novel GABRB3 variant in Dravet syndrome: Case report and literature review

2020

Abstract Background Mutations in GABRB3 have been identified in subjects with different types of epilepsy and epileptic syndromes, including West syndrome (WS), Dravet syndrome (DS), Lennox‐Gastaut syndrome (LGS), myoclonic‐atonic epilepsy (MAE), and others. Methods and results We herewith report on a girl affected by DS, who has been followed from infancy to the current age of 18 years. Next‐generation sequencing (NGS)‐based genetic testing for multigene analysis of neurodevelopmental disorders identified two likely de novo pathogenic mutations, a missense variant in GABRB3 gene (c.842 C>T; p.Thr281IIe) and a nonsense variant found in BBS4 gene (c.883 C>T; p.Arg295Ter). Conclusion A likely…

0301 basic medicinelcsh:QH426-470media_common.quotation_subjectNonsenseMutation MissenseEpilepsies Myoclonic030105 genetics & hereditymedicine.disease_causeClinical ReportsBBS4 gene03 medical and health sciencesEpilepsyDravet syndromeGeneticsMedicineMissense mutationHumansMolecular BiologyGeneGenetics (clinical)media_commonGenetic testingGeneticsMutationClinical Reportmedicine.diagnostic_testbusiness.industryGABRB3 GeneEpileptic EncephalopathiesWest Syndromemedicine.diseaseReceptors GABA-ADravet syndromelcsh:Genetics030104 developmental biologyPhenotypeCodon NonsenseChild PreschoolFemalebusinessMicrotubule-Associated Proteins
researchProduct