Search results for "ESG"
showing 10 items of 685 documents
Enfermedad periodontal y diabetes mellitus gestacional: estudio caso-control
2021
Antecedentes Los estudios que relacionan la enfermedad periodontal (EP) y la diabetes mellitus gestacional (DMG) no son concordantes. Nuestro objetivo principal es evaluar la posible asociación entre la EP y la DMG. Además, analizamos los factores de riesgo para la DMG en nuestra muestra. Métodos Participaron 180 gestantes, 90 con DMG y 90 controles, del Hospital La Fe de Valencia. Se pasó un cuestionario y realizo un examen periodontal, valorándose los siguientes parámetros: número de dientes, índices de placa y sangrado al sondaje, profundidad de sondaje (PS) y nivel de inserción de clínica (NIC). La periodontitis se definió según criterios de la CDC-AAP. Resultados Las DMG tuvieron mayor…
Las representaciones del saber académico: Aportaciones desde la Geografía Escolar
2019
When we talk with basic education´s teachers there is an impression in the case of learning Social Sciences, and Geography in particular that these sciences are not useful for the explanation of socio-environmental and daily problems. In this research, improvement proposals are sought so that students are motivated to learn about these problems. Based on two case studies such as flood risks (and their relationship with climate change) and the problems of the rural areas, the possibilities of combining motivation for learning close to personal emotions and with their own rigor have been explored of the conceptual explanation. To validate these results, quantitative and qualitative research t…
A function whose graph has positive doubling measure
2014
We show that a doubling measure on the plane can give positive measure to the graph of a continuous function. This answers a question by Wang, Wen and Wen. Moreover we show that the doubling constant of the measure can be chosen to be arbitrarily close to the doubling constant of the Lebesgue measure.
Generalized Lebesgue points for Sobolev functions
2017
In this article, we show that a function $f\in M^{s,p}(X),$ $0<s\leq 1,$ $0<p<1,$ where $X$ is a doubling metric measure space, has generalized Lebesgue points outside a set of $\mathcal{H}^h$-Hausdorff measure zero for a suitable gauge function $h.$
Rearrangement and convergence in spaces of measurable functions
2007
We prove that the convergence of a sequence of functions in the space of measurable functions, with respect to the topology of convergence in measure, implies the convergence -almost everywhere ( denotes the Lebesgue measure) of the sequence of rearrangements. We obtain nonexpansivity of rearrangement on the space , and also on Orlicz spaces with respect to a finitely additive extended real-valued set function. In the space and in the space , of finite elements of an Orlicz space of a -additive set function, we introduce some parameters which estimate the Hausdorff measure of noncompactness. We obtain some relations involving these parameters when passing from a bounded set of , or , to th…
Specification on the interval
1997
We study the consequences of discontinuities on the specification property for interval maps. After giving a necessary and sufficient condition for a piecewise monotonic, piecewise continuous map to have this property, we show that for a large and natural class of families of such maps (including the β \beta -transformations), the set of parameters for which the specification property holds, though dense, has zero Lebesgue measure. Thus, regarding the specification property, the general case is at the opposite of the continuous case solved by A.M. Blokh (Russian Math. Surveys 38 (1983), 133–134) (for which we give a proof).
On a multiplication and a theory of integration for belief and plausibility functions
1987
Abstract Belief and plausibility functions have been introduced as generalizations of probability measures, which abandon the axiom of additivity. It turns out that elementwise multiplication is a binary operation on the set of belief functions. If the set functions of the type considered here are defined on a locally compact and separable space X , a theorem by Choquet ensures that they can be represented by a probability measure on the space containing the closed subsets of X , the so-called basic probability assignment. This is basic for defining two new types of integrals. One of them may be used to measure the degree of non-additivity of the belief or plausibility function. The other o…
On a normal form of symmetric maps of [0, 1]
1980
A class of continuous symmetric mappings of [0, 1] into itself is considered leaving invariant a measure absolutely continuous with respect to the Lebesgue measure.
Stochastic differential equations with coefficients in Sobolev spaces
2010
We consider It\^o SDE $\d X_t=\sum_{j=1}^m A_j(X_t) \d w_t^j + A_0(X_t) \d t$ on $\R^d$. The diffusion coefficients $A_1,..., A_m$ are supposed to be in the Sobolev space $W_\text{loc}^{1,p} (\R^d)$ with $p>d$, and to have linear growth; for the drift coefficient $A_0$, we consider two cases: (i) $A_0$ is continuous whose distributional divergence $\delta(A_0)$ w.r.t. the Gaussian measure $\gamma_d$ exists, (ii) $A_0$ has the Sobolev regularity $W_\text{loc}^{1,p'}$ for some $p'>1$. Assume $\int_{\R^d} \exp\big[\lambda_0\bigl(|\delta(A_0)| + \sum_{j=1}^m (|\delta(A_j)|^2 +|\nabla A_j|^2)\bigr)\big] \d\gamma_d0$, in the case (i), if the pathwise uniqueness of solutions holds, then the push-f…
A Note on Algebraic Sums of Subsets of the Real Line
2002
AbstractWe investigate the algebraic sums of sets for a large class of invari-ant ˙-ideals and ˙- elds of subsets of the real line. We give a simpleexample of two Borel subsets of the real line such that its algebraicsum is not a Borel set. Next we show a similar result to Proposition 2from A. Kharazishvili paper [4]. Our results are obtained for ideals withcoanalytical bases. 1 Introduction We shall work in ZFC set theory. By !we denote natural numbers. By 4wedenote the symmetric di erence of sets. The cardinality of a set Xwe denoteby jXj. By R we denote the real line and by Q we denote rational numbers. IfAand Bare subsets of R n and b2R , then A+B= fa+b: a2A^b2Bgand A+ b= A+ fbg. Simila…