Search results for "Eigenvalue"
showing 10 items of 344 documents
Full modal analysis of confocal coaxial elliptical waveguides
2000
An efficient method for analysing confocal coaxial elliptical waveguides is presented. Using elliptical coordinates, the differential Helmholtz equation is transformed into a linear matrix eigenvalue problem by means of the method of moments. The expressions of the vector mode functions for the full spectrum of these guides are constructed, including the TEM, TM and TE modes. The convergence of the method is very good, giving an efficient and accurate code. Comparisons with numerical results found in the technical literature validate the presented theory.
Statistical properties of the eigenvalue spectrum of the three-dimensional Anderson Hamiltonian
1993
A method to describe the metal-insulator transition (MIT) in disordered systems is presented. For this purpose the statistical properties of the eigenvalue spectrum of the Anderson Hamiltonian are considered. As the MIT corresponds to the transition between chaotic and nonchaotic behavior, it can be expected that the random matrix theory enables a qualitative description of the phase transition. We show that it is possible to determine the critical disorder in this way. In the thermodynamic limit the critical point behavior separates two different regimes: one for the metallic side and one for the insulating side.
Analysis of multi degree of freedom systems with fractional derivative elements of rational order
2014
In this paper a novel method based on complex eigenanalysis in the state variables domain is proposed to uncouple the set of rational order fractional differential equations governing the dynamics of multi-degree-of-freedom system. The traditional complex eigenanalysis is appropriately modified to be applicable to the coupled fractional differential equations. This is done by expanding the dimension of the problem and solving the system in the state variable domain. Examples of applications are given pertaining to multi-degree-of-freedom systems under both deterministic and stochastic loads.
Quantum computing thanks to Bianchi groups
2018
It has been shown that the concept of a magic state (in universal quantum computing: uqc) and that of a minimal informationally complete positive operator valued measure: MIC-POVMs (in quantum measurements) are in good agreement when such a magic state is selected in the set of non-stabilizer eigenstates of permutation gates with the Pauli group acting on it [1]. Further work observed that most found low-dimensional MICs may be built from subgroups of the modular group PS L(2, Z) [2] and that this can be understood from the picture of the trefoil knot and related 3-manifolds [3]. Here one concentrates on Bianchi groups PS L(2, O10) (with O10 the integer ring over the imaginary quadratic fie…
Notice of Removal: Stochastic generation of the phononic band structure of lossy and infinite crystals
2017
The concept of the band structure is central to the field of phononic crystals. Indeed, capturing the dispersion of Bloch waves — the eigenmodes of propagation in periodic media — gives invaluable information on allowed propagation modes, their phase and group velocities, local resonances, and band gaps. Band structures are usually obtained by solving an eigenvalue problem defined on a closed and bounded domain, which results in a discrete spectrum. There are at least two cases, however, that cannot be reduced to a simple eigenvalue problem: first, when materials showing dispersive loss are present and second, when the unit-cell extends beyond any bound, as in the case of phononic crystal o…
Operators on Partial Inner Product Spaces: Towards a Spectral Analysis
2014
Given a LHS (Lattice of Hilbert spaces) $V_J$ and a symmetric operator $A$ in $V_J$, in the sense of partial inner product spaces, we define a generalized resolvent for $A$ and study the corresponding spectral properties. In particular, we examine, with help of the KLMN theorem, the question of generalized eigenvalues associated to points of the continuous (Hilbertian) spectrum. We give some examples, including so-called frame multipliers.
The algebra eigenstates method for some systems with spin-like interactions
2006
International audience; An extension of the algebra eigenstates formalism is proposed to solve the eigenvalue equation for a class of problems involving "spin interactions". The method is detailed for the harmonic oscillator, su(2) and su(1, 1) algebras. Special emphasis is given to the resolution of problems in vibronic spectroscopy involving doubly degenerate electronic states.
Some analytical considerations on two-scale relations
1994
Scaling functions that generate a multiresolution analysis (MRA) satisfy, among other conditions, the so-called «two-scale relation» (TSR). In this paper we discuss a number of properties that follow from the TSR alone, independently of any MRA: position of zeros (mainly for continuous scaling functions), existence theorems (using fixed point and eigenvalue arguments) and orthogonality relation between integer translates. © 1994 Società Italiana di Fisica.
Pseudo-bosons and Riesz Bi-coherent States
2016
After a brief review on D-pseudo-bosons we introduce what we call Riesz bi-coherent states, which are pairs of states sharing with ordinary coherent states most of their features. In particular, they produce a resolution of the identity and they are eigenstates of two different annihilation operators which obey pseudo-bosonic commutation rules.
Strong quantum scarring by local impurities
2016
We discover and characterize strong quantum scars, or eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremize the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of…