Search results for "Eigenvalues"
showing 10 items of 315 documents
Inverse eigenvalue problem for normal J-hamiltonian matrices
2015
[EN] A complex square matrix A is called J-hamiltonian if AT is hermitian where J is a normal real matrix such that J(2) = -I-n. In this paper we solve the problem of finding J-hamiltonian normal solutions for the inverse eigenvalue problem. (C) 2015 Elsevier Ltd. All rights reserved.
Elementary presentation of self‐consistent intermediate Hamiltonians and proposal of two totally dressed singles and doubles configuration interactio…
1994
Intermediate Hamiltonians are effective Hamiltonians which are defined on an N‐dimensional model space but which only provide n<N exact eigenvalues and the projections of the corresponding eigenvectors onto the model space. For a single root research, the intermediate Hamiltonian may be obtained from the restriction of the Hamiltonian to the model space by an appropriate, uniquely defined dressing of the diagonal energies or of the first column. Approximate self‐consistent dressings may be proposed. The simplest perturbative form gives the same result as the original 2nd order intermediate Hamiltonian or the ‘‘shifted Bk’’ technique but it is of easier implementation. Self‐consistent inclus…
A chain of solvable non-Hermitian Hamiltonians constructed by a series of metric operators
2021
We show how, given a non-Hermitian Hamiltonian $H$, we can generate new non-Hermitian operators sequentially, producing a virtually infinite chain of non-Hermitian Hamiltonians which are isospectral to $H$ and $H^\dagger$ and whose eigenvectors we can easily deduce in an almost automatic way; no ingredients are necessary other than $H$ and its eigensystem. To set off the chain and keep it running, we use, for the first time in our knowledge, a series of maps all connected to different metric operators. We show how the procedure works in several physically relevant systems. In particular, we apply our method to various versions of the Hatano-Nelson model and to some PT-symmetric Hamiltonians.
Full modal analysis of confocal coaxial elliptical waveguides
2000
An efficient method for analysing confocal coaxial elliptical waveguides is presented. Using elliptical coordinates, the differential Helmholtz equation is transformed into a linear matrix eigenvalue problem by means of the method of moments. The expressions of the vector mode functions for the full spectrum of these guides are constructed, including the TEM, TM and TE modes. The convergence of the method is very good, giving an efficient and accurate code. Comparisons with numerical results found in the technical literature validate the presented theory.
Extension of the line element-less method to dynamic problems
2020
The line element-less method is an efficient approach for the approximate solution of the Laplace or biharmonic equation on a general bidimensional domain. Introducing generalized harmonic polynomials as approximation functions, we extend the line element-less method to the inhomogeneous Helmholtz equation and to the eigenvalue problem for the Helmholtz equation. The obtained approximate solutions are critically discussed and advantages as well as limitations of the approach are pointed out.
Monotonicity and local uniqueness for the Helmholtz equation
2017
This work extends monotonicity-based methods in inverse problems to the case of the Helmholtz (or stationary Schr\"odinger) equation $(\Delta + k^2 q) u = 0$ in a bounded domain for fixed non-resonance frequency $k>0$ and real-valued scattering coefficient function $q$. We show a monotonicity relation between the scattering coefficient $q$ and the local Neumann-Dirichlet operator that holds up to finitely many eigenvalues. Combining this with the method of localized potentials, or Runge approximation, adapted to the case where finitely many constraints are present, we derive a constructive monotonicity-based characterization of scatterers from partial boundary data. We also obtain the local…
The equality case in a Poincaré–Wirtinger type inequality
2016
It is known that, for any convex planar set W, the first non-trivial Neumann eigenvalue μ1 (Ω) of the Hermite operator is greater than or equal to 1. Under the additional assumption that Ω is contained in a strip, we show that β1 (Ω) = 1 if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.
The discretized harmonic oscillator: Mathieu functions and a new class of generalized Hermite polynomials
2003
We present a general, asymptotical solution for the discretised harmonic oscillator. The corresponding Schr\"odinger equation is canonically conjugate to the Mathieu differential equation, the Schr\"odinger equation of the quantum pendulum. Thus, in addition to giving an explicit solution for the Hamiltonian of an isolated Josephon junction or a superconducting single-electron transistor (SSET), we obtain an asymptotical representation of Mathieu functions. We solve the discretised harmonic oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into an infinite set of algebraic equations which are later shown to be satisfied by the obtained solution. The proposed ansa…
Are most of the stationary points in a molecular association minima? Application of Fraga's potential to benzene-benzene
1993
The importance of characterizing the stationary points of the intermolecular potential by means of Hessian eigenvalues is illustrated for the calculation of the benzene–benzene interaction using an atom-to-atom pair potential proposed by Fraga (FAAP). Two models, the standard one-center-per atom and another using three-centers-per atom due to Hunter and Sanders, are used to evaluate the electrostatic contributions and the results are compared. It is found in both cases that although using low-gradient thresholds allows optimization procedures to avoid many stationary points that are not true minima computing time considerations makes the usual procedure of using high-gradient thresholds [sa…
AMYR 2: A new version of a computer program for pair potential calculation of molecular associations
1998
AMYR is a computer program for the calculation of molecular associations using Fraga's pairwise atom-atom potential. The interaction energy is evaluated through a 1R expansion. The electrostatic energy is calculated through either the one-centre-per atom or the three-centres-per atom model by Hunter and Sanders. A pairwise dispersion energy term is included in the potential and corrected by a damping function. The program carries out energy minimizations through variable metric methods. The new version allows for the stationary point analysis of the intermolecular potential by means of the Hessian eigenvalues. Although using low-gradient thresholds optimization procedures to avoid many stat…