Search results for "Ejecta"

showing 10 items of 76 documents

ALMA spectral survey of Supernova 1987A – molecular inventory, chemistry, dynamics and explosive nucleosynthesis

2017

We report the first molecular line survey of Supernova 1987A in the millimetre wavelength range. In the ALMA 210--300 and 340--360 GHz spectra, we detected cold (20--170 K) CO, 28SiO, HCO+ and SO, with weaker lines of 29SiO from ejecta. This is the first identification of HCO+ and SO in a young supernova remnant. We find a dip in the J=6--5 and 5--4 SiO line profiles, suggesting that the ejecta morphology is likely elongated. The difference of the CO and SiO line profiles is consistent with hydrodynamic simulations, which show that Rayleigh-Taylor instabilities cause mixing of gas, with heavier elements much more disturbed, making more elongated structure. We obtained isotopologue ratios of…

CIRCUMSTELLAR RINGMetallicityLINE EMISSIONINFRARED WATER-VAPORFOS: Physical sciencesAstrophysics01 natural sciences7. Clean energySpectral lineISM [radio lines]CORE-COLLAPSE SUPERNOVAENucleosynthesis0103 physical sciencesIsotopologueEjectaSupernova remnantLarge Magellanic CloudCARBON-MONOXIDE010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)molecules [ISM]QBHigh Energy Astrophysical Phenomena (astro-ph.HE)Physicsabundances [ISM]010308 nuclear & particles physicssupernova remnants [ISM]II-P SUPERNOVAEAstronomyindividual: Supernova 1987A [supernovae]NEBULA M 1-92Astronomy and AstrophysicsSupernovaAstrophysics - Solar and Stellar AstrophysicsPhysics and Astronomy13. Climate actionSpace and Planetary ScienceLARGE-MAGELLANIC-CLOUDAstrophysics - High Energy Astrophysical PhenomenaMASSIVE STARSSN 1987AMonthly Notices of the Royal Astronomical Society
researchProduct

Detailed study of SNR G306.3–0.9 using XMM-Newton and Chandra observations

2016

Aims. We aim to study the spatial distribution of the physical and chemical properties of the X-ray emitting plasma of the supernova remnant (SNR) G306.3-0.9 in detail to obtain constraints on its ionization stage, the progenitor supernova explosion, and the age of the remnant. Methods. We used combined data from XMM-Newton and Chandra observatories to study the X-ray morphology of G306.3-0.9 in detail. A spatially resolved spectral analysis was used to obtain physical and geometrical parameters of different regions of the remnant. Spitzer infrared observations, available in the archive, were also used to constrain the progenitor supernova and study the environment in which the remnant evol…

Ciencias AstronómicasInfraredCiencias FísicasAstrophysics::High Energy Astrophysical PhenomenaISM [Infrared]FOS: Physical sciencesthermal [radiation mechanism]individual objects: SNR G306.3–0.9 [ISM]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral line//purl.org/becyt/ford/1 [https]ISM: individual objects: SNR G306.3IonizationISM [X-ray]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsISM [X-rays]Radio continuum: ISMEjectaSupernova remnant010303 astronomy & astrophysicsISM: supernova remnantAstrophysics::Galaxy AstrophysicsISM: supernova remnantsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Infrared: ISM010308 nuclear & particles physicssupernova remnants [ISM]Astronomy and AstrophysicsPlasma//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicISM: individual objects: SNR G306.3–0.9ISM [Radio continuum]Radiation mechanisms: thermalX-rays: ISMindividual objects: G306.3-0.9 [ISM]Interstellar mediumAstronomíaSupernovathermal [Radiation mechanisms]Space and Planetary ScienceISM; ISM: individual objects: SNR G306.3; ISM: supernova remnants; Radiation mechanisms: thermal; Radio continuum: ISM; X-rays: ISM; Astronomy and Astrophysics; Space and Planetary Science [0.9; Infrared]0.9Astrophysics - High Energy Astrophysical PhenomenaCIENCIAS NATURALES Y EXACTAS
researchProduct

Black hole-neutron star coalescence: effects of the neutron star spin on jet launching and dynamical ejecta mass

2020

Black hole-neutron star (BHNS) mergers are thought to be sources of gravitational waves (GWs) with coincident electromagnetic (EM) counterparts. To further probe whether these systems are viable progenitors of short gamma-ray bursts (sGRBs) and kilonovae, and how one may use (the lack of) EM counterparts associated with LIGO/Virgo candidate BHNS GW events to sharpen parameter estimation, we study the impact of neutron star spin in BHNS mergers. Using dynamical spacetime magnetohydrodynamic simulations of BHNSs initially on a quasicircular orbit, we survey configurations that differ in the BH spin ($a_{\rm BH}/M_{\rm BH}=0$ and $0.75$), the NS spin ($a_{\rm NS}/M_{\rm NS}=-0.17,\,0,\,0.23$ a…

Coalescence (physics)PhysicsAstrofísicaHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Mass ratio01 natural sciences7. Clean energyGeneral Relativity and Quantum CosmologyArticleNeutron starAccretion disc13. Climate action0103 physical sciencesAstronomiaInvariant massAtomic physics010306 general physicsEjectaAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Photometric and Spectroscopic Properties of Type Ia Supernova 2018oh with Early Excess Emission from the $Kepler$ 2 Observations

2019

Supernova (SN) 2018oh (ASASSN-18bt) is the first spectroscopically-confirmed type Ia supernova (SN Ia) observed in the $Kepler$ field. The $Kepler$ data revealed an excess emission in its early light curve, allowing to place interesting constraints on its progenitor system (Dimitriadis et al. 2018, Shappee et al. 2018b). Here, we present extensive optical, ultraviolet, and near-infrared photometry, as well as dense sampling of optical spectra, for this object. SN 2018oh is relatively normal in its photometric evolution, with a rise time of 18.3$\pm$0.3 days and $\Delta$m$_{15}(B)=0.96\pm$0.03 mag, but it seems to have bluer $B - V$ colors. We construct the "uvoir" bolometric light curve hav…

DATA RELEASEULTRAVIOLETFACTORY OBSERVATIONSFOS: Physical sciencesAstrophysicsType (model theory)medicine.disease_causeSN 2011FE01 natural sciencesLuminosityPhotometry (optics)individual (SN 2018oh) [supernovae]supernovae: generalCIRCUMSTELLAR MATERIAL0103 physical sciencesmedicineSPECTRAAbsorption (logic)Ejecta010303 astronomy & astrophysicssupernovae: individualQCSolar and Stellar Astrophysics (astro-ph.SR)QBLIGHT CURVESHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsHIGH-VELOCITY FEATURES010308 nuclear & particles physicsAstronomy and AstrophysicsLight curveSupernovaAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceIMPROVED DISTANCESWHITE-DWARF MODELSAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]general [supernovae]Ultraviolet
researchProduct

Carbon Monoxide in the Cold Debris of Supernova 1987A

2013

We report spectroscopic and imaging observations of rotational transitions of cold CO and SiO in the ejecta of SN1987A, the first such emission detected in a supernova remnant. In addition to line luminosities for the CO J=1-0, 2-1, 6-5, and 7-6 transitions, we present upper limits for all other transitions up to J=13-12, collectively measured from the Atacama Large Millimeter Array (ALMA), the Atacama Pathfinder EXperiment (APEX), and the Herschel Spectral and Photometric Imaging REceiver (SPIRE). Simple models show the lines are emitted from at least 0.01 solar masses of CO at a temperature > 14 K, confined within at most 35% of a spherical volume expanding at ~ 2000 km/s. Moreover, we…

FOS: Physical sciencesAstrophysicsWAVELENGTHindividual (SN1987A) [supernovae]FACILITYEjectaSupernova remnantSolar and Stellar Astrophysics (astro-ph.SR)3-DIMENSIONAL STRUCTURELine (formation)PhysicsSolar massSN-1987AINSTRUMENTsupernova remnants [ISM]Astronomy and AstrophysicsAtacama Large Millimeter ArrayDebrisSupernovaSpireEJECTACASSIOPEIAPhysics and AstronomyAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceREMNANTSN 1987A
researchProduct

Overionization in X-ray spectra: a new paradigm for Mixed-Morphology SNRs

2011

Mixed-morphology SNRs are characterized by a shell-like radio emission, a centrally peaked X-ray morphology, and by interaction with molecular clouds. Many models have been proposed to explain these peculiar remnants, but their physical origin is still unclear. The recent discovery of over-ionized (i. e. recombining) ejecta in 3 mixed-morphology SNRs has dramatically challenged all the previous models and opened up new, unexpected scenarios. I review the main properties of these remnants and their peculiar X-ray spectral properties. I also discuss the hydrodynamic model developed to explain the presence of over-ionized ejecta in W49B and present a list of open issues that still need to be c…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaMixed-morphology SNRs are characterized by a shell-like radio emission a centrally peaked X-ray morphology and by interaction with molecular clouds. Many models have been proposed to explain these peculiar remnants but their physical origin is still unclear. The recent discovery of overionized (i. e. recombining) ejecta in 3 mixed-morphology SNRs has dramatically challenged all the previous models and opened up new unexpected scenarios. I review the main properties of these remnants and their peculiar X-ray spectral properties. I also discuss the hydrodynamic model developed to explain the presence of overionized ejecta in W49B and present a list of open issues that still need to be clarified.Astrophysics::Galaxy Astrophysics
researchProduct

Nucleosynthesis in magneto-rotational supernovae

2020

Abstract We present the nucleosynthesis of magneto-rotational supernovae (MR-SNe) including neutrino-driven and magneto-rotational-driven ejecta based, for the first time, on two-dimensional simulations with accurate neutrino transport. The models analysed here have different rotation and magnetic fields, allowing us to explore the impact of these two key ingredients. The accurate neutrino transport of the simulations is critical to analyse the slightly neutron rich and proton rich ejecta that are similar to the, also neutrino-driven, ejecta in standard supernovae. In the model with strong magnetic field, the r-process produces heavy elements up to the third r-process peak (A ∼ 195), in agr…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesGalaxySupernovaStarsNeutron starSpace and Planetary ScienceNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsNeutrinoEjectaHypernovaAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

The chemical signature of jet-driven hypernovae

2020

Hypernovae powered by magnetic jets launched from the surface of rapidly rotating millisecond magnetars are one of the leading models to explain broad-lined Type Ic supernovae (SNe Ic-BL), and have been implicated as an important source of metal enrichment in the early Universe. We investigate the nucleosynthesis in such jet-driven hypernovae using a parameterised, but physically motivated, approach that analytically relates an artificially injected jet energy flux to the power available from the energy in differential rotation in the proto-neutron star. We find ejected $^{56}\mathrm{Ni}$ masses of $0.05\,\mathrm{M}_\odot - 0.45\,\mathrm{M}_\odot$ in our most energetic models with explosion…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsType (model theory)01 natural sciencesInterstellar mediumSupernovaStars13. Climate actionSpace and Planetary ScienceNucleosynthesis0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaHypernovaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsEnergy (signal processing)Monthly Notices of the Royal Astronomical Society
researchProduct

Unveiling pure-metal ejecta X-ray emission in supernova remnants through their radiative recombination continuum

2020

Spectral analysis of X-ray emission from ejecta in supernova remnants (SNRs) is hampered by the low spectral resolution of CCD cameras, which creates a degeneracy between the best-fit values of abundances and emission measure. The combined contribution of shocked ambient medium and ejecta to the X-ray emission complicates the determination of the ejecta mass and chemical composition, leading to big uncertainties in mass estimates and it can introduce a bias in the comparison between the observed ejecta composition and the yields predicted by explosive nucleosynthesis. We explore the capabilities of present and future spectral instruments with the aim of identifying a spectral feature which …

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010504 meteorology & atmospheric sciencesSpectrometerAstrophysics::High Energy Astrophysical PhenomenaBremsstrahlungFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics01 natural sciencesSpectral lineSupernovaSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceNucleosynthesis0103 physical sciencesISM: abundances ISM: individual objects: Cas A ISM: supernova remnants X-rays: general X-rays: individuals: Cas AAstrophysics::Solar and Stellar AstrophysicsSpontaneous emissionSpectral resolutionAstrophysics - High Energy Astrophysical PhenomenaEjecta010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

Spatial distribution of X-ray emitting ejecta in Tychos SNR: indications of shocked Titanium

2015

Young supernova remnants show a characteristic ejecta-dominated X-ray emission that allows us to probe the products of the explosive nucleosynthesis processes and to ascertain important information about the physics of the supernova explosions. Hard X-ray observations have recently revealed the radioactive decay lines of 44Ti at ~67.9 keV and ~78.4 keV in the Tycho's SNR. We here analyze the set of XMM-Newton archive observations of the Tycho's SNR. We produce equivalent width maps of the Fe K and Ca XIX emission lines and find indications for a stratification of the abundances of these elements and significant anisotropies. We then perform a spatially resolved spectral analysis by identify…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSpectral lineISM: individual objects: Tycho's SNR ISM: supernova remnants X-rays: ISMSupernovaSpace and Planetary ScienceNucleosynthesisAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaEjectaAnisotropyEquivalent widthRadioactive decayAstrophysics::Galaxy Astrophysics
researchProduct