Search results for "Electric Conductivity"

showing 10 items of 82 documents

Ion conduction in the KcsA potassium channel analyzed with a minimal kinetic model.

2004

We use a model by Nelson to study the current-voltage and conductance-concentration curves of bacterial potassium channel KcsA without assuming rapid ion translocation. Ion association to the channel filter is rate controlling at low concentrations, but dissociation and transport in the filter can limit conduction at high concentration for ions other than ${\mathrm{K}}^{+}$. The absolute values of the effective rate constants are tentative but the relative changes in these constants needed to qualitatively explain the experiments should be of significance.

Materials scienceIon TransportPotassium ChannelsCell MembraneKcsA potassium channelElectric ConductivityThermodynamicsIon-associationThermal conductionModels BiologicalPotassium channelDissociation (chemistry)IonMembrane PotentialsKineticsReaction rate constantBacterial ProteinsModels ChemicalPotassiumPhysical chemistryComputer SimulationIon Channel GatingIon channelPhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Formation and Rupture of Schottky Nanocontacts on ZnO Nanocolumns

2007

In this paper, the electrical transport and mechanical properties of Pt/ZnO Schottky nanocontacts have been studied simultaneously during the formation and rupture of the nanocontacts. By combining multidimensional conducting scanning force spectroscopy with appropriated data processing, the physical relevant parameters (the ideality factor, the Schottky barrier height, and the rupture voltage) are obtained. It has been found that the transport curves strongly depend on the loading force. For loading forces higher than a threshold value, the transport characteristics are similar to those of large-area Schottky contact, while below this threshold deviations from strictly thermionic emission …

Materials scienceMacromolecular SubstancesSurface PropertiesSchottky barrierMolecular ConformationBioengineeringNanotechnologyThermionic emissionElectrical resistivity and conductivityMaterials TestingElectrochemistryNanotechnologyGeneral Materials ScienceParticle SizeNanotubesCondensed matter physicsbusiness.industryMechanical EngineeringElectric ConductivityForce spectroscopySchottky diodeEquipment DesignGeneral ChemistryCondensed Matter PhysicsEquipment Failure AnalysisSemiconductorSemiconductorsNanoelectronicsNanodotZinc OxideCrystallizationbusinessMicroelectrodesNano Letters
researchProduct

Domain wall transformations and hopping in La0.7Sr0.3MnO3nanostructures imaged with high resolution x-ray magnetic microscopy

2014

We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that,…

Materials scienceNanostructure530 PhysicsNucleation01 natural sciencesCondensed Matter::Materials ScienceLanthanum0103 physical sciencesMicroscopyddc:530General Materials Science010306 general physicsSpin (physics)010302 applied physicsMicroscopyCondensed matter physicsMagnetic PhenomenaX-RaysElectric ConductivityTemperatureOxides530 PhysikCondensed Matter PhysicsNanostructuresVortexDomain wall (magnetism)Manganese CompoundsStrontiumCurie temperatureCondensed Matter::Strongly Correlated ElectronsJoule heatingJournal of Physics: Condensed Matter
researchProduct

Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons

2013

[EN] Molecular electronics based on structures ordered as neural networks emerges as the next evolutionary milestone in the construction of nanodevices with unprecedented applications. However, the straightforward formation of geometrically defined and interconnected nanostructures is crucial for the production of electronic circuitry nanoequivalents. Here we report on the molecularly fine-tuned self-assembly of tetrakis-Schiff base compounds into nanosized rings interconnected by unusually large nanorods providing a set of connections that mimic a biological network of neurons. The networks are produced through self-assembly resulting from the molecular conformation and noncovalent intermo…

Materials scienceNanostructurePolymersSurface PropertiesEvaporationGeneral Physics and AstronomyNanoparticleNanotechnologyElectronsHardware_PERFORMANCEANDRELIABILITY010402 general chemistry01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyRodCircuitsCIENCIA DE LOS MATERIALES E INGENIERIA METALURGICAHardware_INTEGRATEDCIRCUITSAnimalsHumansNanotechnologyMolecular circuitsRingsSchiff BasesElectronic circuitNeuronsMultidisciplinaryNanotubes010405 organic chemistryFlowElectric ConductivityArchitecturesGeneral ChemistryEvaporation (deposition)0104 chemical sciencesNanostructuresNanoparticlesSelf-assemblyNeural Networks ComputerPrinciplesHardware_LOGICDESIGNModel
researchProduct

Low Conductive Electrodeposited Poly(2,5-dimethoxyaniline) as a Key Material in a Double Lateral Heterojunction, for Sub-ppm Ammonia Sensing in Humid…

2019

We present a new device called a double lateral heterojunction (DLH) as an ammonia sensor in humid atmosphere. It combines polyaniline derivatives in their poor conducting state with a highly conductive molecular material, lutetium bisphthalocyanine, LuPc2. Polyaniline and poly(2,5-dimethoxyaniline) are electrodeposited on ITO interdigitated electrodes, leading to an original device that can be obtained only by electrochemistry and not by other solution processing techniques. Both polymers lead to highly conducting materials that require a neutralization step before their coverage by LuPc2. While the device based on polyaniline shows ohmic behavior, the nonlinear I- V characteristics of the…

Materials sciencePolymersBioengineering02 engineering and technologyElectrochemistry01 natural scienceschemistry.chemical_compoundAmmoniaLimit of DetectionPolyaniline[CHIM]Chemical SciencesInstrumentationOhmic contactElectrical conductorComputingMilieux_MISCELLANEOUSFluid Flow and Transfer ProcessesConductive polymerchemistry.chemical_classificationAniline Compoundsbusiness.industryProcess Chemistry and Technology010401 analytical chemistryElectric ConductivityHumidityHeterojunctionPolymer021001 nanoscience & nanotechnologyElectroplating0104 chemical sciencesDielectric spectroscopySemiconductorschemistryOptoelectronics0210 nano-technologybusiness
researchProduct

Depletion-induced percolation in networks of nanorods.

2006

Above a certain density threshold, suspensions of rod-like colloidal particles form system-spanning networks. Using Monte Carlo simulations, we investigate how the depletion forces caused by spherical particles affect these networks in isotropic suspensions of rods. Although the depletion forces are strongly anisotropic and favor alignment of the rods, the percolation threshold of the rods decreases significantly. The relative size of the effect increases with the aspect ratio of the rods. The structural changes induced in the suspension by the depletant are characterized in detail and the system is compared to an ideal fluid of freely interpenetrable rods.

Materials sciencegenetic structuresEntropyMonte Carlo method: Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesGeneral Physics and AstronomyCondensed Matter - Soft Condensed MatterRodColloidSuspensionsComputer SimulationColloidsParticle SizeAnisotropyCondensed Matter - Materials ScienceModels StatisticalNanotubesCondensed matter physicsIsotropyElectric ConductivityMaterials Science (cond-mat.mtrl-sci)Percolation thresholdCondensed Matter::Soft Condensed Matter: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Soft Condensed Matter (cond-mat.soft)AnisotropyNanorodsense organsParticle sizeMonte Carlo MethodPhysical review letters
researchProduct

Origin of impulse initiation in the slowly adapting stretch receptor of the crayfish

1974

Characteristic for the crayfish stretch receptor is a gradual decrease in axon diameter up to a stretch of axon about 350 μm away from the soma-axon border. In response to depolarizing currents applied at different positions along the axon this stretch of axon can be localized as the most excitable membrane region. When depolarizing current steps of 10–25 nA intensity are injected into the soma the first impulse is always triggered in the soma (due to sudden rise in the membrane potential) while the second impulse originates at the axon region of highest escitability. As the intensity of the stimulus is increased the site of impulse initiation along the axon shifts nearer to the receptor so…

Membrane potentialPhysiologyChemistryVoltage clampClinical BiochemistryElectric ConductivityAstacoideaAxon hillockResting potentialAxonsAntidromicElectrophysiologymedicine.anatomical_structurenervous systemPhysiology (medical)medicineBiophysicsAnimalsSomaAxonMechanoreceptorsNeuroscienceStretch receptorPfl�gers Archiv European Journal of Physiology
researchProduct

Coordination polymers based on diiron tetrakis(dithiolato) bridged by alkali metals, electrical bistability around room temperature, and strong antif…

2015

Coordination polymer chains have been formed by the direct reaction between HSC6H2Cl2SH and FeCl3·6H2O in the presence of an aqueous solution of the corresponding alkali-metal hydroxide (M = Li, Na, and K) or carbonate (M = Rb and Cs). The structures consist of dimeric [Fe2(SC6H2Cl2S)4](2-) entities bridged by [M2(THF)4] [M = K (1), Rb (2), and Cs (3); THF = tetrahydrofuran] or {[Na2(μ-H2O)2(THF)2] (5 and 5') units. The smaller size of the lithium atom yields an anion/cation ion-pair molecule, [Li(THF)4]2[Fe2(SC6H2Cl2S)4] (4), in which the dianionic moieties are held together by Cl···Cl interactions. Electrical characterization of these compounds shows a general semiconductor behavior in wh…

Models MolecularCoordination polymerMetals AlkaliPolymersInorganic chemistryElectric ConductivityTemperatureAlkali metalIonInorganic Chemistrychemistry.chemical_compoundCrystallographychemistrySemiconductorsAntiferromagnetismHydroxideMoleculeFerrous CompoundsSulfhydryl CompoundsPhysical and Theoretical ChemistryTetrahydrofuranLithium atomInorganic chemistry
researchProduct

Ionic conduction, rectification, and selectivity in single conical nanopores

2006

Modern track-etching methods allow the preparation of membranes containing a single charged conical nanopore that shows high ionic permselectivity due to the electrical interactions of the surface pore charges with the mobile ions in the aqueous solution. The nanopore has potential applications in electrically assisted single-particle detection, analysis, and separation of biomolecules. We present a detailed theoretical and experimental account of the effects of pore radii and electrolyte concentration on the current-voltage and current-concentration curves. The physical model used is based on the Nernst-Planck and Poisson equations. Since the validity of continuum models for the descriptio…

Models MolecularGeneral Physics and AstronomyIonic bondingRectificationNanotechnologyElectrolytePoisson equationIonElectrolytesBiopolymersIonic conductivityBiomembranesIonic conductivityComputer SimulationPoisson DistributionPhysical and Theoretical ChemistryParticle Size:FÍSICA::Química física [UNESCO]IonsPhysics::Biological PhysicsIon TransportChemistryElectric ConductivityWaterBiological TransportConical surfaceMolecular biophysicsNanostructuresUNESCO::FÍSICA::Química físicaSolutionsNanoporeMembraneBiomembranes ; Bioelectric phenomena ; Ionic conductivity ; Rectification ; Molecular biophysics ; Electrolytes ; Poisson equationChemical physicsBioelectric phenomenaPoisson's equationPorosity
researchProduct

Electrical Conductivity and Luminescence in Coordination Polymers Based on Copper(I)-Halides and Sulfur-Pyrimidine Ligands

2011

The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather diffe…

Models MolecularLuminescencePyrimidinePolymersDimerInorganic chemistryElectric ConductivityHalidechemistry.chemical_elementSulfidesCrystallography X-RayLigandsSulfurCopperInorganic ChemistrySolventchemistry.chemical_compoundPyrimidineschemistryCoordination ComplexesPolymer chemistryPhysical and Theoretical ChemistryLuminescenceCopperBond cleavageInorganic Chemistry
researchProduct