Search results for "Electronic structure"

showing 10 items of 722 documents

Efficient Approach for Simulating Distorted Materials

2010

The operation principles of nanoscale devices are based upon both electronic and mechanical properties of materials. Because these properties can be coupled, they need to be investigated simultaneously. At this moment, however, the electronic structure calculations with custom-made long-range mechanical distortions are impossible, or expensive at best. Here we present a unified formalism to solve exactly the electronic structures of nanomaterials with versatile distortions. We illustrate the formalism by investigating twisted armchair graphene nanoribbons with the least possible number of atoms. Apart from enabling versatile material distortions, the formalism is capable of reducing computa…

Condensed Matter - Materials ScienceComputer scienceScience and engineeringMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyMechanical engineeringNanotechnology02 engineering and technologyElectronic structure021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Other Condensed MatterFormalism (philosophy of mathematics)0103 physical sciences010306 general physics0210 nano-technologyMaterial propertiesGraphene nanoribbonsOther Condensed Matter (cond-mat.other)Physical Review Letters
researchProduct

Searching for hexagonal analogues of the half-metallic half-Heusler XYZ compounds

2008

The XYZ half-Heusler crystal structure can conveniently be described as a tetrahedral zinc blende YZ structure which is stuffed by a slightly ionic X species. This description is well suited to understand the electronic structure of semiconducting 8-electron compounds such as LiAlSi (formulated Li$^+$[AlSi]$^-$) or semiconducting 18-electron compounds such as TiCoSb (formulated Ti$^{4+}$[CoSb]$^{4-}$). The basis for this is that [AlSi]$^-$ (with the same electron count as Si$_2$) and [CoSb]$^{4-}$ (the same electron count as GaSb), are both structurally and electronically, zinc-blende semiconductors. The electronic structure of half-metallic ferromagnets in this structure type can then be d…

Condensed Matter - Materials ScienceMaterials scienceAcoustics and UltrasonicsMagnetoresistanceMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesIonic bondingContext (language use)Electronic structureCrystal structureCondensed Matter PhysicsSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter - Other Condensed MatterCrystallographyFerromagnetismCharge carrierOther Condensed Matter (cond-mat.other)Wurtzite crystal structure
researchProduct

Magnetic anisotropy in Fe/U and Ni/U bilayers

2021

Magnetometry measurements of Fe/U and Ni/U bilayer systems reveal a non-monotonic dependence of the magnetic anisotropy for U thicknesses in the range 0 nm - 8 nm, with the Fe/U bilayers showing a more prominent effect as compared to Ni/U. The stronger response for Fe/U is ascribed to the stronger 3d-5f hybridization of Fe and U. This non-monotonic behaviour is thought to arise from quantum well states in the uranium overlayers. Estimating an oscillation period from the non-monotonic data, and comparing it to Density Functional Theory calculations, we find that wavevector matches to the experimental data can be made to regions of high spectral density in (010) and (100) cuts of the electron…

Condensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnetometerOscillationBilayerMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectronic structurelaw.inventionMagnetic anisotropylawMesoscale and Nanoscale Physics (cond-mat.mes-hall)Wave vectorDensity functional theoryTexture (crystalline)Physical Review B
researchProduct

Quantum Well States in Two-Dimensional Gold Clusters on MgO Thin Films

2008

The electronic structure of ultra-small Au clusters on thin MgO/Ag(001) films has been analyzed by scanning tunneling spectroscopy and density functional theory. The clusters exhibit two-dimensional (2D) quantum well states, whose shapes resemble the eigen-states of a 2D electron gas confined in a parabolic potential. From the symmetries of the HOMO and LUMO of a particular cluster, its electron filling and charge state is determined. In accordance to a DFT Bader-charge analysis, aggregates containing up to twenty atoms accumulate one to four extra electrons due to a charge transfer from the MgO/Ag interface. The HOMO - LUMO gap is found to close for clusters containing between 70 and 100 a…

Condensed Matter - Materials ScienceMaterials scienceScanning tunneling spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyElectronic structureElectronlaw.inventionQuantum dotlawPhysics::Atomic and Molecular ClustersCluster (physics)Density functional theoryAtomic physicsScanning tunneling microscopeHOMO/LUMOPhysical Review Letters
researchProduct

Nonmagnetic and magnetic thiolate-protected Au25superatoms on Cu(111), Ag(111), and Au(111) surfaces

2012

Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer…

Condensed Matter - Materials ScienceMaterials scienceta114Condensed Matter - Mesoscale and Nanoscale PhysicsMagnetic momentBand gapMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesElectronic structureCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsCrystallographyMesoscale and Nanoscale Physics (cond-mat.mes-hall)Cluster (physics)Density functional theoryPhysics - Atomic and Molecular ClustersAtomic physicsAtomic and Molecular Clusters (physics.atm-clus)Spin (physics)HOMO/LUMOEnergy (signal processing)Physical Review B
researchProduct

Effects of high pressure on the optical absorption spectrum of scintillating PbWO4 crystals

2006

The pressure behavior of the absorption edge of PbWO4 was studied up to 15.3 GPa. It red-shifts at -71 meV/GPa below 6.1 GPa, but at 6.3 GPa the band-gap collapses from 3.5 eV to 2.75 eV. From 6.3 GPa to 11.1 GPa, the absorption edge moves with a pressure coefficient of -98 meV/GPa, undergoing additional changes at 12.2 GPa. The results are discussed in terms of the electronic structure of PbWO4 which attribute the behavior of the band-gap to changes in the local atomic structure. The changes observed at 6.3 GPa and 12.2 GPa are attributed to phase transitions.

Condensed Matter - Materials SciencePhase transitionPhysics - Instrumentation and DetectorsMaterials sciencePhysics and Astronomy (miscellaneous)Absorption spectroscopyCondensed matter physicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)Electronic structurePressure coefficientAbsorption edgeHigh pressureApplied Physics Letters
researchProduct

Effects of pressure on the local atomic structure of CaWO4 and YLiF4: mechanism of the scheelite-to-wolframite and scheelite-to-fergusonite transitio…

2003

The pressure response of the scheelite phase of CaWO4 (YLiF4) and the occurrence of the pressure induced scheelite-to-wolframite (M-fergusonite) transition are reviewed and discussed. It is shown that the change of the axial parameters under compression is related with the different pressure dependence of the W-O (Li-F) and Ca-O (Y-F) interatomic bonds. Phase transition mechanisms for both compounds are proposed. Furthermore, a systematic study of the phase transition in 16 different scheelite ABX4 compounds indicates that the transition pressure increases as the packing ratio of the anionic BX4 units around the A cations increases.

Condensed Matter - Materials ScienceWolframitePhase transitiondigestive oral and skin physiologyInorganic chemistryMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesThermodynamicsElectronic structureengineering.materialCondensed Matter PhysicsFergusonitePressure responseElectronic Optical and Magnetic MaterialsInorganic Chemistrychemistry.chemical_compoundchemistryScheelitePhase (matter)X-ray crystallographyMaterials ChemistryCeramics and CompositesengineeringPhysical and Theoretical ChemistryJournal of Solid State Chemistry
researchProduct

Quantum Mechanical Modelling of Pure and Defective KNbO3 Perovskites

2000

Ab initio electronic structure calculations using the density-functional theory (DFT) are performed for KNbO3 with and without defects. Ferroelectric distortive transitions involve very small changes in energies and are therefore sensitive to DFT-approximations. This is discussed by comparing results obtained with the local density approximation (LDA) to those where generalized gradient approximations (GGA) are used. The results of ab initio calculations for F-type centers and bound hole polarons are compared to those obtained by a semiempirical method of the Intermediate Neglect of the Differential Overlap (INDO), based on the HartreeFock formalism. Supercells with 40 and 320 atoms were us…

Condensed Matter::Materials ScienceCondensed matter physicsAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersAb initioDensity functional theoryElectronic structureLocal-density approximationPolaronMolecular physicsFerroelectricityQuantumMathematics
researchProduct

Electronic structure of two crystallographic forms ofBaRuO3

2000

Electronic structure calculations have been performed to explain the difference in the electronic properties of two crystallographic forms of ${\mathrm{BaRuO}}_{3}.$ The calculations can explain the qualitatively different resistivities of isoelectronic $4H$- and $9R$-${\mathrm{BaRuO}}_{3}$ below 100 K. The difference in symmetry between the hexagonal four-layer ${\mathrm{BaRuO}}_{3}$ and the rhombohedral nine-layer compound allows the formation of a gap for the later. The electronic structure of these hexagonal perovskites is compared with the more familiar cubic perovskite ${\mathrm{CaRuO}}_{3}.$

Condensed Matter::Materials ScienceCrystallographyMaterials scienceHexagonal crystal systemCondensed Matter::Strongly Correlated ElectronsElectronic structureTrigonal crystal systemSymmetry (geometry)Perovskite (structure)Electronic propertiesPhysical Review B
researchProduct

<title>Computer modeling of point defects, polarons, excitons, and surfaces in perovskite ferroelectrics</title>

2003

We review results of our recent large-scale computer simulations of point defects, excitons and polarons in ABO3 perovskite crystals, focusing mostly on KNbO3 and KTaO3 as representative examples. We have calculated the atomic and electronic structure of defects, their optical absorption and defect-induced electron density redistribution. The majority of results are obtained using the quantum chemical method of the intermediate neglect of differential overlap (INDO) based on the Hartree-Frock formalism. The main findings are compared with results of ab initio Density Functional Theory (FP-LMTO) first-principles calculations. The results of the electronic structure calculations for different…

Condensed Matter::Materials ScienceElectron densityChemical speciesCondensed matter physicsChemical bondChemistryExcitonAb initioDensity functional theoryElectronic structurePolaronSPIE Proceedings
researchProduct