Search results for "Embryonic Stem Cells"
showing 10 items of 72 documents
m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin
2021
Abstract Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only b…
Beyond islet trasplantation in diabetes cell terapy:from embryonic stem cells to transdifferentation of adult cells
2013
Exogenous insulin is, at the moment, the therapy of choice of diabetes, but does not allow tight regulation of glucose leading to long-term complications. Recently, pancreatic islet transplantation to reconstitute insulin-producing cells, has emerged as an alternative promising therapeutic approach. Unfortunately, the number of donor islets is too low compared with the high number of patients needing a transplantation leading to a search for renewable sources of high-quality -cells. This review, summarizes more recent promising approaches to the generation of new -cells from embryonic stem cells for transdifferentiation of adult cells, particularly a critical examination of the seminal work…
Human stem cells from single blastomeres reveal pathways of embryonic or trophoblast fate specification.
2015
Mechanisms of initial cell fate decisions differ among species. To gain insights into lineage allocation in humans, we derived ten human embryonic stem cell lines (designated UCSFB1-10) from single blastomeres of four 8-cell embryos and one 12-cell embryo from a single couple. Compared with numerous conventional lines from blastocysts, they had unique gene expression and DNA methylation patterns that were, in part, indicative of trophoblast competence. At a transcriptional level, UCSFB lines from different embryos were often more closely related than those from the same embryo. As predicted by the transcriptomic data, immunolocalization of EOMES, T brachyury, GDF15 and active β-catenin reve…
Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models
2013
As the conventional approach to assess the potential of a chemical to cause cancer in humans still includes the 2-year rodent carcinogenicity bioassay, development of alternative methodologies is needed. In the present study, the transcriptomics responses following exposure to genotoxic (GTX) and non-genotoxic (NGTX) hepatocarcinogens and non-carcinogens (NC) in five liver-based in vitro models, namely conventional and epigenetically stabilized cultures of primary rat hepatocytes, the human hepatoma-derived cell lines HepaRG and HepG2 and human embryonic stem cell-derived hepatocyte-like cells, are examined. For full characterization of the systems, several bioinformatics approaches are emp…
Human Embryonic Stem Cell Derived Hepatocyte-Like Cells as a Tool for In Vitro Hazard Assessment of Chemical Carcinogenicity
2011
Hepatocyte-like cells derived from the differentiation of human embryonic stem cells (hES-Hep) have potential to provide a human relevant in vitro test system in which to evaluate the carcinogenic hazard of chemicals. In this study, we have investigated this potential using a panel of 15 chemicals classified as noncarcinogens, genotoxic carcinogens, and nongenotoxic carcinogens and measured whole-genome transcriptome responses with gene expression microarrays. We applied an ANOVA model that identified 592 genes highly discriminative for the panel of chemicals. Supervised classification with these genes achieved a cross-validation accuracy of > 95%. Moreover, the expression of the response g…
Computational identification of cell-specific variable regions in ChIP-seq data.
2019
ABSTRACT Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is used to identify genome-wide DNA regions bound by proteins. Several sources of variation can affect the reproducibility of a particular ChIP-seq assay, which can lead to a misinterpretation of where the protein under investigation binds to the genome in a particular cell type. Given one ChIP-seq experiment with replicates, binding sites not observed in all the replicates will usually be interpreted as noise and discarded. However, the recent discovery of high-occupancy target (HOT) regions suggests that there are regions where binding of multiple transcription factors can be identified. To investigate these regions,…
The commonly used marker ELAV is transiently expressed in neuroblasts and glial cells in theDrosophilaembryonic CNS
2007
Glial cells in the Drosophila embryonic nervous system can be monitored with the marker Reversed-polarity (Repo), whereas neurons lack Repo and express the RNA-binding protein ELAV (Embryonic Lethal, Abnormal Vision). Since the first description of the ELAV protein distribution in 1991 (Robinow and White), it is believed that ELAV is an exclusive neuronal and postmitotic marker. Looking at ELAV expression, we unexpectedly observed that, in addition to neurons, ELAV is transiently expressed in embryonic glial cells. Furthermore, it is transiently present in the proliferating longitudinal glioblast, and it is transcribed in embryonic neuroblasts. Likewise, elav-Gal4 lines, which are generally…
Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental aut…
2009
Abstract Background The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. Results To s…
3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography
2013
We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical and morphological localization by determining a complete infrared spectrum for every voxel (millions of spectra determined per sample).
Reverse engineering a mouse embryonic stem cell-specific transcriptional network reveals a new modulator of neuronal differentiation
2012
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and …