Search results for "Emerging technologies"
showing 10 items of 317 documents
Continuous-Variable Quantum Teleportation of Discrete-Variable Entanglement
2013
We experimentally demonstrate continuous-variable quantum teleportation of discrete-variable entanglement in the form of a split single photon. Entanglement is optimally transferred for finite resource squeezing by tuning the teleporter's feedforward gain.
Hybrid quantum teleportation
2013
Quantum teleportation allows for the transfer of arbitrary, in principle, unknown quantum states from a sender to a spatially distant receiver, who share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation. In order to realize flying qubits in these schemes, photons are an optimal choice. However, teleporting a photonic qubit has been limited due to experimental inefficiencies and restrictions. Major disadvantages have been the probabilistic nature of both entangled resource states and linear-optics Bell-state measurements (BSM), as well as the need for post-selecting the successful events by destroy…
Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level
2008
The electronic shell structure of triangular, hexagonal and round graphene quantum dots (flakes) near the Fermi level has been studied using a tight-binding method. The results show that close to the Fermi level the shell structure of a triangular flake is that of free massless particles, and that triangles with an armchair edge show an additional sequence of levels ("ghost states"). These levels result from the graphene band structure and the plane wave solution of the wave equation, and they are absent for triangles with an zigzag edge. All zigzag triangles exhibit a prominent edge state at the Fermi level, and few low-energy conduction electron states occur both in triangular and hexagon…
A simple quantum gate with atom chips
2005
We present a simple scheme for implementing an atomic phase gate using two degrees of freedom for each atom and discuss its realization with cold rubidium atoms on atom chips. We investigate the performance of this collisional phase gate and show that gate operations with high fidelity can be realized in magnetic traps that are currently available on atom chips.
Gain tuning for continuous-variable quantum teleportation of discrete-variable states
2013
We present a general formalism to describe continuous-variable (CV) quantum teleportation of discrete-variable (DV) states with gain tuning, taking into account experimental imperfections. Here the teleportation output is given by independently transforming each density matrix element of the initial state. This formalism allows us to accurately model various teleportation experiments and to analyze the gain dependence of their respective figures of merit. We apply our formalism to the recent experiment of CV teleportation of qubits [S. Takeda et al., Nature 500, 315 (2013)] and investigate the optimal gain for the transfer fidelity. We also propose and model an experiment for CV teleportati…
Simultaneous readout of two charge qubits
2006
We consider a system of two solid state charge qubits, coupled to a single read-out device, consisting of a single-electron transistor (SET). The conductance of each tunnel junction is influenced by its neighboring qubit, and thus the current through the transistor is determined by the qubits' state. The full counting statistics of the electrons passing the transistor is calculated, and we discuss qubit dephasing, as well as the quantum efficiency of the readout. The current measurement is then compared to readout using real-time detection of the SET island's charge state. For the latter method we show that the quantum efficiency is always unity. Comparing the two methods a simple geometric…
Resetting of a planar superconducting quantum memory
2009
We consider and analyze a scheme for the reset of a M × N planar array of inductively coupled Josephson flux qubits. We prove that it is possible to minimize the resetting time of an arbitrary chosen row of qubits by properly switching on and off the coupling between pairs of qubits belonging to the same column. In addition, the analysis of the time evolution of the array allows us to single out the class of generalized W states which can be successfully reset.
Teleportation-assisted optical controlled-sign gates
2019
Reliable entangling gates for qubits encoded in single-photon states represent a major challenge on the road to scalable quantum computing architectures based on linear optics. In this work, we present two approaches to develop high-fidelity, near-deterministic controlled-sign-shift gates based on the techniques of quantum gate teleportation. On the one hand, teleportation in a discrete-variable setting, i.e., for qubits, offers unit-fidelity operations but suffers from low success probabilities. Here, we apply recent results on advanced linear optical Bell measurements to reach a near-deterministic regime. On the other hand, in the setting of continuous variables, associated with coherent …
Unrestricted generation of pure two-qubit states and entanglement diagnosis by single-qubit tomography.
2019
We present an experimental proof-of-principle for the generation and detection of pure two-qubit states that have been encoded in degrees of freedom that are common to both classical-light beams and single photons. Our protocol requires performing polarization tomography on a single qubit from a qubit pair. The degree of entanglement in the qubit pair is measured by concurrence, which can be directly extracted from intensity measurements-or photon counting-entering single-qubit polarization tomography.
ERGODICITY IN RANDOMLY COLLIDING QUBITS
2009
The dynamics of a single qubit randomly colliding with an environment consisting of just two qubits is discussed. It is shown that the system reaches an equilibrium state which coincides with a pure random state of three qubits. Furthermore the time average and the ensemble averages of the quantities used to characterize the approach to equilibrium (purity and tangles) coincide, a signature of ergodic behavior.