Search results for "Eura"

showing 10 items of 3336 documents

Local field potential activity dynamics in response to deep brain stimulation of the subthalamic nucleus in Parkinson's disease

2020

Abstract Local field potentials (LFPs) may afford insight into the mechanisms of action of deep brain stimulation (DBS) and potential feedback signals for adaptive DBS. In Parkinson's disease (PD) DBS of the subthalamic nucleus (STN) suppresses spontaneous activity in the beta band and drives evoked resonant neural activity (ERNA). Here, we investigate how STN LFP activities change over time following the onset and offset of DBS. To this end we recorded LFPs from the STN in 14 PD patients during long (mean: 181.2 s) and short (14.2 s) blocks of continuous stimulation at 130 Hz. LFP activities were evaluated in the temporal and spectral domains. During long stimulation blocks, the frequency …

0301 basic medicineChange over timeMaleDeep brain stimulationSteady state (electronics)Parkinson's diseasemedicine.medical_treatmentDeep Brain StimulationParkinson's disease610 Medicine & healthStimulationFeedback markersLocal field potentialHigh frequency oscillationsArticlelcsh:RC321-57103 medical and health sciences0302 clinical medicineSubthalamic NucleusmedicineHumansBeta (finance)Adaptive deep brain stimulation610 Medicine & healthEvoked PotentialsBeta oscillationslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryAgedLocal field potentialsChemistryParkinson DiseaseMiddle Agedmedicine.diseasenervous system diseasesSubthalamic nucleus030104 developmental biologysurgical procedures operativeNeurologynervous systemParkinson’s diseaseFemaleEvoked resonant neural activityGamma activityBeta RhythmNeuroscience030217 neurology & neurosurgery
researchProduct

Biological investigation of neural circuits in the insect brain

2018

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabil…

0301 basic medicineCognitive sciencebiologyWorking memoryComputer sciencefungiForagingEnergy Engineering and Power Technologybiology.organism_classification03 medical and health sciences030104 developmental biology0302 clinical medicineEngineering (all)Orientation (mental)Mushroom bodiesBiological neural networkRobotMathematics (all)Biotechnology; Chemical Engineering (all); Mathematics (all); Materials Science (all); Energy Engineering and Power Technology; Engineering (all)Chemical Engineering (all)Materials Science (all)Drosophila melanogasterDrosophila030217 neurology & neurosurgeryBiotechnology
researchProduct

Motor-skill learning in an insect inspired neuro-computational control system

2017

In nature, insects show impressive adaptation and learning capabilities. The proposed computational model takes inspiration from specific structures of the insect brain: after proposing key hypotheses on the direct involvement of the mushroom bodies (MBs) and on their neural organization, we developed a new architecture for motor learning to be applied in insect-like walking robots. The proposed model is a nonlinear control system based on spiking neurons. MBs are modeled as a nonlinear recurrent spiking neural network (SNN) with novel characteristics, able to memorize time evolutions of key parameters of the neural motor controller, so that existing motor primitives can be improved. The ad…

0301 basic medicineComputer scienceBiomedical Engineeringinsect brainNonlinear controlAdaptation and learning03 medical and health sciences0302 clinical medicineMotor controllerArtificial Intelligenceinsect mushroom bodiesHypothesis and TheoryMotor skillSpiking neural networkHexapodgoal-oriented behaviorControl systemslearningbusiness.industryControl systems; Neural networks; Adaptation and learning030104 developmental biologyControl systemRobotArtificial intelligencespiking neural controllersMotor learningbusiness030217 neurology & neurosurgeryNeural networksNeuroscience
researchProduct

Deep learning architectures for prediction of nucleosome positioning from sequences data

2018

Abstract Background Nucleosomes are DNA-histone complex, each wrapping about 150 pairs of double-stranded DNA. Their function is fundamental for one of the primary functions of Chromatin i.e. packing the DNA into the nucleus of the Eukaryote cells. Several biological studies have shown that the nucleosome positioning influences the regulation of cell type-specific gene activities. Moreover, computational studies have shown evidence of sequence specificity concerning the DNA fragment wrapped into nucleosomes, clearly underlined by the organization of particular DNA substrings. As the main consequence, the identification of nucleosomes on a genomic scale has been successfully performed by com…

0301 basic medicineComputer scienceCellBiochemistrychemistry.chemical_compound0302 clinical medicineStructural Biologylcsh:QH301-705.5Nucleosome classificationSequenceSettore INF/01 - InformaticabiologyApplied MathematicsEpigeneticComputer Science ApplicationsChromatinNucleosomesmedicine.anatomical_structurelcsh:R858-859.7EukaryoteDNA microarrayDatabases Nucleic AcidComputational biologySaccharomyces cerevisiaelcsh:Computer applications to medicine. Medical informatics03 medical and health sciencesDeep LearningmedicineNucleosomeAnimalsHumansEpigeneticsMolecular BiologyGeneBase Sequencebusiness.industryDeep learningResearchReproducibility of Resultsbiology.organism_classificationYeastNucleosome classification Epigenetic Deep learning networks Recurrent neural networks030104 developmental biologylcsh:Biology (General)chemistryRecurrent neural networksROC CurveDeep learning networksArtificial intelligenceNeural Networks Computerbusiness030217 neurology & neurosurgeryDNABMC Bioinformatics
researchProduct

The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function

2021

It is difficult to answer important questions in neuroscience, such as: “how do neural circuits generate behaviour?,” because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion…

0301 basic medicineComputer scienceCognitive Neurosciencemedia_common.quotation_subjectved/biology.organism_classification_rank.speciesNeuroscience (miscellaneous)Neurosciences. Biological psychiatry. Neuropsychiatry03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineDevelopment (topology)Biological neural networkModel organismFunction (engineering)DrosophilaElectronic circuitmedia_commonbiologyved/biologyvariabilityfungiconnectomebiology.organism_classificationSensory Systemscritical periodlocomotion030104 developmental biologyConnectomeDrosophilaDrosophila melanogasterNeurosciencecircuit030217 neurology & neurosurgeryRC321-571Frontiers in Neural Circuits
researchProduct

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)ta3112Radio spectrumSynchronizationlcsh:RC321-571Correlation03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineBiological neural networkMethodsTime domainlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySimulationEvent (probability theory)rat cortical cellsMEAmicroelectrode array213 Electronic automation and communications engineering electronicsspectral entropyInformation processingCorrectiondeveloping neuronal networksMultielectrode array217 Medical engineering030104 developmental biologycorrelationmouse cortical cellsBiological systemsynchronization030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

2019

As rats learn to search for multiple sources of food or water in a complex environment, they generate increasingly efficient trajectories between reward sites. Such spatial navigation capacity involves the replay of hippocampal place-cells during awake states, generating small sequences of spatially related place-cell activity that we call "snippets". These snippets occur primarily during sharp-wave-ripples (SWRs). Here we focus on the role of such replay events, as the animal is learning a traveling salesperson task (TSP) across multiple trials. We hypothesize that snippet replay generates synthetic data that can substantially expand and restructure the experience available and make learni…

0301 basic medicineComputer sciencePlace cellMachine learningcomputer.software_genreSpatial memorySynthetic data03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineModels of neural computationGeneticsReinforcement learningMolecular BiologyEcology Evolution Behavior and SystematicsEcologybusiness.industryReservoir computingSnippet030104 developmental biologyComputational Theory and MathematicsModeling and SimulationSequence learningArtificial intelligencebusinesscomputer030217 neurology & neurosurgeryPLOS Computational Biology
researchProduct

Deep learning network for exploiting positional information in nucleosome related sequences

2017

A nucleosome is a DNA-histone complex, wrapping about 150 pairs of double-stranded DNA. The role of nucleosomes is to pack the DNA into the nucleus of the Eukaryote cells to form the Chromatin. Nucleosome positioning genome wide play an important role in the regulation of cell type-specific gene activities. Several biological studies have shown sequence specificity of nucleosome presence, clearly underlined by the organization of precise nucleotides substrings. Taking into consideration such advances, the identification of nucleosomes on a genomic scale has been successfully performed by DNA sequence features representation and classical supervised classification methods such as Support Vec…

0301 basic medicineComputer scienceSpeech recognitionCell02 engineering and technologyComputational biologyGenomeDNA sequencing03 medical and health scienceschemistry.chemical_compoundDeep Learning0202 electrical engineering electronic engineering information engineeringmedicineNucleosomeNucleotideGeneSettore ING-INF/05 - Sistemi Di Elaborazione Delle Informazionichemistry.chemical_classificationSequenceSettore INF/01 - Informaticabiologybusiness.industryDeep learningnucleosomebiology.organism_classificationSubstringChromatinIdentification (information)030104 developmental biologymedicine.anatomical_structurechemistry020201 artificial intelligence & image processingEukaryoteNucleosome classification Epigenetic Deep learning networks Recurrent Neural NetworksArtificial intelligencebusinessDNA
researchProduct

Deep Learning Architectures for DNA Sequence Classification

2017

DNA sequence classification is a key task in a generic computational framework for biomedical data analysis, and in recent years several machine learning technique have been adopted to successful accomplish with this task. Anyway, the main difficulty behind the problem remains the feature selection process. Sequences do not have explicit features, and the commonly used representations introduce the main drawback of the high dimensionality. For sure, machine learning method devoted to supervised classification tasks are strongly dependent on the feature extraction step, and in order to build a good representation it is necessary to recognize and measure meaningful details of the items to cla…

0301 basic medicineComputer sciencebusiness.industryProcess (engineering)Deep learningFeature extractionFeature selection02 engineering and technologyMachine learningcomputer.software_genreConvolutional neural networkTask (project management)03 medical and health sciences030104 developmental biologyRecurrent neural network0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligenceRepresentation (mathematics)businesscomputer
researchProduct

Brain-like large scale cognitive networks and dynamics

2018

A new approach to the study of the brain and its functions known as Human Connectomics has been recently established. Starting from magnetic resonance images (MRI) of brain scans, it is possible to identify the fibers that link brain areas and to build an adjacency matrix that connects these areas, thus creating the brain connectome. The topology of these networks provides a lot of information about the organizational structure of the brain (both structural and functional). Nevertheless this knowledge is rarely used to investigate the possible emerging brain dynamics linked to cognitive functions. In this work, we implement finite state models on neural networks to display the outcoming bra…

0301 basic medicineConnectomicsQuantitative Biology::Neurons and CognitionArtificial neural networkComputer sciencebusiness.industryGeneral Physics and AstronomyCognitionPattern recognitionCognitive network03 medical and health sciencesPhysics and Astronomy (all)030104 developmental biology0302 clinical medicineNeuroimagingConnectomeGeneral Materials ScienceSegmentationAdjacency matrixArtificial intelligenceMaterials Science (all)Physical and Theoretical Chemistrybusiness030217 neurology & neurosurgery
researchProduct