Search results for "Experimental autoimmune encephalomyelitis"
showing 10 items of 88 documents
The more the merrier? Scoring, statistics and animal welfare in experimental autoimmune encephalomyelitis.
2016
Experimental autoimmune encephalomyelitis (EAE) is a frequently used animal model for the investigation of autoimmune processes in the central nervous system. As such, EAE is useful for modelling certain aspects of multiple sclerosis, a human autoimmune disease that leads to demyelination and axonal destruction. It is an important tool for investigating pathobiology, identifying drug targets and testing drug candidates. Even though EAE is routinely used in many laboratories and is often part of the routine assessment of knockouts and transgenes, scoring of the disease course has not become standardized in the community, with at least 83 published scoring variants. Varying scales with diffe…
IL ‐1 signaling is critical for expansion but not generation of autoreactive GM ‐ CSF + Th17 cells
2016
Abstract Interleukin‐1 (IL‐1) is implicated in numerous pathologies, including multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE). However, the exact mechanism by which IL‐1 is involved in the generation of pathogenic T cells and in disease development remains largely unknown. We found that following EAE induction, pertussis toxin administration leads to IL‐1 receptor type 1 (IL‐1R1)‐dependent IL‐1β expression by myeloid cells in the draining lymph nodes. This myeloid‐derived IL‐1β did not vitally contribute to the generation and plasticity of Th17 cells, but rather promoted the expansion of a GM‐CSF + Th17 cell subset, thereby enhancing its encephalitog…
Targeting CD52 does not affect murine neuron and microglia function.
2020
The humanized anti-CD52 antibody alemtuzumab is successfully used in the treatment of multiple sclerosis (MS) and is thought to exert most of its therapeutic action by depletion and repopulation of mainly B and T lymphocytes. Although neuroprotective effects of alemtuzumab have been suggested, direct effects of anti-CD52 treatment on glial cells and neurons within the CNS itself have not been investigated so far. Here, we show CD52 expression in murine neurons, astrocytes and microglia, both in vitro and in vivo. As expected, anti CD52-treatment caused profound lymphopenia and improved disease symptoms in mice subjected to experimental autoimmune encephalomyelitis (EAE). CD52 blockade also …
Dendritic cells tip the balance towards induction of regulatory T cells upon priming in experimental autoimmune encephalomyelitis
2016
Counter-balancing regulatory mechanisms, such as the induction of regulatory T cells (Treg), limit the effects of autoimmune attack in neuroinflammation. However, the role of dendritic cells (DCs) as the most powerful antigen-presenting cells, which are intriguing therapeutic targets in this context, is not fully understood. Here, we demonstrate that conditional ablation of DCs during the priming phase of myelin-specific T cells in experimental autoimmune encephalomyelitis (EAE) selectively aborts inducible Treg (iTreg) induction, whereas generation of T helper (Th)1/17 cells is unaltered. DCs facilitate iTreg induction by creating a milieu with high levels of interleukin (IL)-2 due to a st…
EBI2 – Sensor for dihydroxycholesterol gradients in neuroinflammation
2018
Dihydroxycholesterols such as 7α,25-dihydroxysterols (7α,25-OHC) and 7α,27-OHC are generated from cholesterol by the enzymes CH25H, CYP7B1 and CYP27A1 in steady state but also in the context of inflammation. The G-protein coupled receptor (GPCR) Epstein-Barr virus-induced gene 2 (EBI2), also known as GPR183, senses these oxysterols and induces chemotactic migration of immune cells towards higher concentrations of these ligands. We recently showed that these ligands are upregulated in the CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis and that EBI2 enhanced early infiltration of encephalitogenic T cells into the CNS. In this short-review we dis…
TGF-β inhibitor Smad7 regulates dendritic cell-induced autoimmunity
2017
TGF-β is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8(+)CD103(+) DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune ence…
Role of the epigenetic factor Sirt7 in neuroinflammation and neurogenesis.
2017
Epigenetic regulators are increasingly recognized as relevant modulators in the immune and nervous system. The class of sirtuins consists of NAD+-dependent histone deacetylases that regulate transcription. Sirtuin family member Sirt1 has already been shown to influence the disease course in an animal model of autoimmune neuroinflammation (experimental autoimmune encephalomyelitis (EAE). A role of Sirt7, a related epigenetic regulator, on immune system regulation has been proposed before, as these mice are more susceptible to develop inflammatory cardiomyopathy. Sirt7-/- animals showed no differences in clinical score compared to wild-type littermates after EAE induction with myelin oligoden…
The Role of ERK Signaling in Experimental Autoimmune Encephalomyelitis
2017
Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating immune cell function and has been implicated in autoimmune disorders. To date, all commercially available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP) kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine influencing the encephalitogenicity …
Fast direct neuronal signaling via the IL-4 receptor as therapeutic target in neuroinflammation.
2018
Ongoing axonal degeneration is thought to underlie disability in chronic neuroinflammation, such as multiple sclerosis (MS), especially during its progressive phase. Upon inflammatory attack, axons undergo pathological swelling, which can be reversible. Because we had evidence for beneficial effects of T helper 2 lymphocytes in experimental neurotrauma and discovered interleukin-4 receptor (IL-4R) expressed on axons in MS lesions, we aimed at unraveling the effects of IL-4 on neuroinflammatory axon injury. We demonstrate that intrathecal IL-4 treatment during the chronic phase of several experimental autoimmune encephalomyelitis models reversed disease progression without affecting inflamma…
Ribosome-Targeting Antibiotics Impair T Cell Effector Function and Ameliorate Autoimmunity by Blocking Mitochondrial Protein Synthesis
2019
Summary While antibiotics are intended to specifically target bacteria, most are known to affect host cell physiology. In addition, some antibiotic classes are reported as immunosuppressive for reasons that remain unclear. Here, we show that Linezolid, a ribosomal-targeting antibiotic (RAbo), effectively blocked the course of a T cell-mediated autoimmune disease. Linezolid and other RAbos were strong inhibitors of T helper-17 cell effector function in vitro, showing that this effect was independent of their antibiotic activity. Perturbing mitochondrial translation in differentiating T cells, either with RAbos or through the inhibition of mitochondrial elongation factor G1 (mEF-G1) progressi…