Search results for "Extracellular"

showing 10 items of 1220 documents

A novel 3D heterotypic spheroid model for studying extracellular vesicle-mediated tumour and immune cell communication

2017

Cancer-derived extracellular vesicles (EVs) have emerged as important mediators of tumour-host interactions, and they have been shown to exert various functional effects in immune cells. In most of the studies on human immune cells, EVs have been isolated from cancer cell culture medium or patients' body fluids and added to the immune cell cultures. In such a setting, the physiological relevance of the chosen EV concentration is unknown and the EV isolation method and the timing of EV administration may bias the results. In the current study we aimed to develop an experimental cell culture model to study EV-mediated effects in human T and B cells at conditions mimicking the tumour microenvi…

0301 basic medicineCell signalingT cellPopulationBiophysicsCell CommunicationBiochemistryExtracellular Vesicles03 medical and health sciences0302 clinical medicineImmune systemCell Line TumorSpheroids CellularmedicineHumanseducationMolecular Biologyeducation.field_of_studyChemistryNeoplasms ExperimentalCell BiologyExtracellular vesicleCoculture TechniquesCell biology030104 developmental biologymedicine.anatomical_structureCell culture030220 oncology & carcinogenesisCancer cellLeukocytes MononuclearCD8Biochemical and Biophysical Research Communications
researchProduct

Alkaline phosphatase dual-binding sites for collagen dictate cell migration and microvessel assembly in vitro

2020

Interactions between cell types, growth factors, and extracellular matrix components involved in angiogenesis are crucial for new vessel formation leading to tissue regeneration. This study investigated whether cocultures of fibroblasts and endothelial cells (ECs; from macro- or microvasculature) play a role in the formation of microvessel-like structures by ECs, as well as modulate fibroblast differentiation and growth factors production (vascular endothelial cell growth factor, basic fibroblast growth factor, active transforming growth factor-beta 1, and interleukin-8), which are important for vessel sprouting and maturation. Data obtained revealed that in vitro coculture systems of fibro…

0301 basic medicineCell typeAngiogenesisProtein ConformationBasic fibroblast growth factorNeovascularization PhysiologicIn Vitro TechniquesBiochemistryExtracellular matrix03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell MovementmedicineHumansFibroblastMolecular BiologyMicrovesselCells CulturedCell ProliferationBinding SitesChemistryHealth sciences Medical and Health sciencesCiências médicas e da saúdeCell migrationCell DifferentiationCell BiologyFibroblastsAlkaline PhosphataseCell biology030104 developmental biologymedicine.anatomical_structure030220 oncology & carcinogenesisMicrovesselsMedical and Health sciencesAlkaline phosphataseCollagenEndothelium VascularCiências da Saúde Ciências médicas e da saúde
researchProduct

The HDAC6 Inhibitor tubacin induces release of CD133+ extracellular vesicles from cancer cells

2017

Tumor-derived extracellular vesicles (EVs) are emerging as an important mode of intercellular communication, capable of transferring biologically active molecules that facilitate the malignant growth and metastatic process. CD133 (Prominin-1), a stem cell marker implicated in tumor initiation, differentiation and resistance to anti-cancer therapy, is reportedly associated with EVs in various types of cancer. However, little is known about the factors that regulate the release of these CD133+ EVs. Here, we report that the HDAC6 inhibitor tubacin promoted the extracellular release of CD133+ EVs from human FEMX-I metastatic melanoma and Caco-2 colorectal carcinoma cells, with a concomitant dow…

0301 basic medicineCellBiologyBiochemistry03 medical and health sciencesDownregulation and upregulationSettore BIO/13 - Biologia ApplicataExtracellularmedicineLIPIDMolecular BiologyCancerCD 133TubacinCell BiologyHDAC6MicrovesiclesCell biologyExosome030104 developmental biologymedicine.anatomical_structureTrichostatin ACancer cellCancer researchextracellular vesicleIntracellularDeacetylase activitymedicine.drug
researchProduct

NG2/CSPG4 and progranulin in the posttraumatic glial scar.

2018

Traumatic injury of the central nervous system is one of the leading causes of death and disability in young adults. Failure of regeneration is caused by autonomous neuronal obstacles and by formation of the glial scar, which is essential to seal the injury but also constitutes a barrier for regrowing axons. The scar center is highly inflammatory and populated by NG2+ glia, whereas astrocytes form the sealing border and trap regrowing axons, suggesting that the non-permissive environment of activated astrocytes and extracellular matrix components is one of the reasons for the regenerative failure. Particularly, secreted chondroitin-sulfate proteoglycans, CSPGs, of the lectican family hinder…

0301 basic medicineCentral nervous systemPerlecanCell CommunicationBiologyGlial scarExtracellular matrix03 medical and health scienceschemistry.chemical_compoundCicatrix0302 clinical medicineProgranulinsmedicineLecticanAnimalsHumansMolecular BiologyMicrogliaReceptors NotchMembrane ProteinsCell biology030104 developmental biologymedicine.anatomical_structurenervous systemchemistryChondroitin Sulfate ProteoglycansChondroitin sulfate proteoglycanBrain InjuriesImmunologybiology.proteinSynaptic signalingNeuroglia030217 neurology & neurosurgeryHeparan Sulfate ProteoglycansSignal TransductionMatrix biology : journal of the International Society for Matrix Biology
researchProduct

Alzheimer's Disease and Molecular Chaperones: Current Knowledge and the Future of Chaperonotherapy

2016

Background: Alzheimer’s disease (AD) is a dementia, a neurodegenerative condition, and a protein-misfolding disease or proteinopathy, characterized by protein deposits, extracellular plaques and intracellular neurofibrillary tangles, which contain the AD’s typical pathological proteins, abnormal [1]-amyloid and hyperphosphorylated tau, respectively, and are located predominantly in the cortex of the frontal, parietal, and temporal brain lobes. What is the role of molecular chaperones in AD? Data indicate that molecular chaperones, also known as Hsp, are involved in AD, probably displaying protective roles and/or acting as pathogenic factors as it occurs in chaperonopathies in which case AD …

0301 basic medicineChaperonotherapyDisease03 medical and health sciencesAlzheimer DiseaseDrug DiscoveryProtein-misfolding diseasemedicineExtracellularAnimalsHumansDementiaAlzheimer’s disease; Chaperonopathies; Chaperonotherapy; Molecular chaperones; Protein-misfolding diseases; Tau; β-amyloid; Pharmacology; Drug Discovery3003 Pharmaceutical ScienceGenePharmacologybiologyβ-amyloidDrug Discovery3003 Pharmaceutical Sciencemedicine.diseaseHsp90030104 developmental biologyChaperone (protein)ImmunologyChaperonopathieMolecular chaperonebiology.proteinHSP60TauAlzheimer’s diseaseNeuroscienceIntracellularMolecular ChaperonesCurrent Pharmaceutical Design
researchProduct

2020

The periodontal ligament (PDL) is exposed to different kinds of mechanical stresses such as bite force or orthodontic tooth movement. A simple and efficient model to study molecular responses to mechanical stress is the application of compressive force onto primary human periodontal ligament fibroblasts via glass disks. Yet, this model suffers from the need for primary cells from human donors which have a limited proliferative capacity. Here we show that an immortalized cell line, PDL-hTERT, derived from primary human periodontal ligament fibroblasts exhibits characteristic responses to glass disk-mediated compressive force resembling those of primary cells. These responses include inductio…

0301 basic medicineChemistryAngiogenesisOrganic Chemistry030206 dentistryGeneral MedicineTransfectionCatalysisComputer Science ApplicationsCell biologyInorganic Chemistry03 medical and health sciences030104 developmental biology0302 clinical medicineCell cultureExtracellularPeriodontal fiberSecretionPhysical and Theoretical ChemistryPrimary cellMolecular BiologyImmortalised cell lineSpectroscopyInternational Journal of Molecular Sciences
researchProduct

Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: towards a new paradigm in tissue engineering

2020

Recent developments in the field of biomaterials for tissue engineering open up new opportunities for regenerative therapy and prevention of progression of osteo-articular damage/impairment. A key advancement was the discovery of the regenerative activity of a group of physiologically occurring high-energy polymers, inorganic polyphosphates (polyP). These bio-polymers, in suitable bioinspired formulations, turned out to be capable of inducing proliferation and differentiation of mesenchymal stem cells into osteogenic or chondrogenic lineages through differential gene expression (morphogenetic activity). Unprecedented is the property of these biopolymers to deliver high-energy phosphate in t…

0301 basic medicineChemistryRegeneration (biology)CartilageMesenchymal stem cellBiomedical EngineeringNanotechnologyGeneral ChemistryGeneral MedicineChondrogenesisRegenerative medicineExtracellular matrix03 medical and health sciences030104 developmental biologymedicine.anatomical_structureTissue engineeringExtracellularmedicineGeneral Materials ScienceJournal of Materials Chemistry B
researchProduct

Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging

2017

Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are curre…

0301 basic medicineCirculating mirnasAgingOffspringmedia_common.quotation_subjectBiologyBioinformaticsArticleExtracellular Vesicles03 medical and health sciencesCirculating microRNAmicroRNAEpigenetic ProfileAnimalsHumansCentenarianmedia_commonInflammationPerspective (graphical)LongevityPhenotype3. Good healthMicroRNAsCirculating MicroRNA030104 developmental biologyAging trajectorieOffspring of centenariansmiR-21-5pBiomarkersDevelopmental Biology
researchProduct

Harnessing mechanosensation in next generation cardiovascular tissue engineering

2020

The ability of the cells to sense mechanical cues is an integral component of ”social” cell behavior inside tissues with a complex architecture. Through ”mechanosensation” cells are in fact able to decrypt motion, geometries and physical information of surrounding cells and extracellular matrices by activating intracellular pathways converging onto gene expression circuitries controlling cell and tissue homeostasis. Additionally, only recently cell mechanosensation has been integrated systematically as a crucial element in tissue pathophysiology. In the present review, we highlight some of the current efforts to assess the relevance of mechanical sensing into pathology modeling and manufact…

0301 basic medicineComputer sciencelcsh:QR1-502Review030204 cardiovascular system & hematologyBiochemistryCardiovascular SystemMechanotransduction Cellularlcsh:MicrobiologyCardiac regeneration03 medical and health sciences0302 clinical medicineTissue engineeringMechanosensingExtracellularAnimalsHumansMolecular BiologyTissue homeostasisMechanosensationTissue EngineeringExtracellular Matrix030104 developmental biologyCardiac regenerationNeuroscienceIntracellular
researchProduct

The good and bad of targeting cancer-associated extracellular matrix

2017

The maintenance of tissue homeostasis requires extracellular matrix (ECM) remodeling. Immune cells actively participate in regenerating damaged tissues contributing to ECM deposition and shaping. Dysregulated ECM deposition characterizes fibrotic diseases and cancer stromatogenesis, where a chronic inflammatory state sustains the ECM increase. In cancer, the ECM fosters several steps of tumor progression, providing pro-survival and proliferative signals, promoting tumor cell dissemination via collagen fibers or acting as a barrier to impede drug diffusion. Interfering with processes leading to chronic ECM deposition, as occurring in cancer, might allow the simultaneous targeting of both pri…

0301 basic medicineContext (language use)BiologyExtracellular matrix03 medical and health sciencesImmune systemNeoplasmsDrug DiscoverymedicineTumor MicroenvironmentAnimalsHumansPharmacology; Drug Discovery3003 Pharmaceutical ScienceMyeloid CellsReceptorTissue homeostasisPharmacologyTumor microenvironmentDrug Discovery3003 Pharmaceutical ScienceCancermedicine.diseaseCell biologyExtracellular Matrix030104 developmental biologyTumor progressionImmunology
researchProduct