Search results for "FIBONACCI"

showing 10 items of 38 documents

A NEW COMPLEXITY FUNCTION FOR WORDS BASED ON PERIODICITY

2013

Motivated by the extension of the critical factorization theorem to infinite words, we study the (local) periodicity function, i.e. the function that, for any position in a word, gives the size of the shortest square centered in that position. We prove that this function characterizes any binary word up to exchange of letters. We then introduce a new complexity function for words (the periodicity complexity) that, for any position in the word, gives the average value of the periodicity function up to that position. The new complexity function is independent from the other commonly used complexity measures as, for instance, the factor complexity. Indeed, whereas any infinite word with bound…

Average-case complexityDiscrete mathematicsFibonacci numberSettore INF/01 - InformaticaGeneral Mathematicscomplexity functionComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Function (mathematics)periodicitycritical factorization theoremCombinatoricsComplexity indexCombinatorics on wordsBounded functionComplexity functionComputer Science::Formal Languages and Automata TheoryWord (computer architecture)Combinatorics on wordMathematicsInternational Journal of Algebra and Computation
researchProduct

Complex Numbers and Polynomials

2016

As mentioned in Chap. 1, for a given set and an operator applied to its elements, if the result of the operation is still an element of the set regardless of the input of the operator, then the set is said closed with respect to that operator.

Classical orthogonal polynomialsPure mathematicssymbols.namesakeOperator (computer programming)Difference polynomialsGegenbauer polynomialsDiscrete orthogonal polynomialsOrthogonal polynomialsFibonacci polynomialssymbolsJacobi polynomialsMathematics
researchProduct

Permutation properties and the fibonacci semigroup

1989

CombinatoricsAlgebra and Number TheoryFibonacci numberSemigroupPartial permutationFibonacci polynomialsBicyclic semigroupGeneralized permutation matrixPisano periodCyclic permutationMathematicsSemigroup Forum
researchProduct

A Loopless Generation of Bitstrings without p Consecutive Ones

2001

Let F n (p) be the set of all n-length bitstrings such that there are no p consecutive ls. F n (p) is counted with the pth order Fibonacci numbers and it may be regarded as the subsets of {1, 2,…, n} without p consecutive elements and bitstrings in F n (p) code a particular class of trees or compositions of an integer. In this paper we give a Gray code for F n (p) which can be implemented in a recursive generating algorithm, and finally in a loopless generating algorithm.

CombinatoricsGray codeSet (abstract data type)Discrete mathematicssymbols.namesakeCode (set theory)Fibonacci numberBinary treeIntegersymbolsOrder (group theory)Hamiltonian pathMathematics
researchProduct

Characteristic Sturmian words are extremal for the Critical Factorization Theorem

2012

We prove that characteristic Sturmian words are extremal for the Critical Factorization Theorem (CFT) in the following sense. If p x ( n ) denotes the local period of an infinite word x at point n , we prove that x is a characteristic Sturmian word if and only if p x ( n ) is smaller than or equal to n + 1 for all n ≥ 1 and it is equal to n + 1 for infinitely many integers n . This result is extremal with respect to the \{CFT\} since a consequence of the \{CFT\} is that, for any infinite recurrent word x, either the function p x is bounded, and in such a case x is periodic, or p x ( n ) ≥ n + 1 for infinitely many integers n . As a byproduct of the techniques used in the paper we extend a r…

Critical Factorization TheoremDiscrete mathematicsPeriodicitySettore INF/01 - InformaticaCombinatorics on wordsGeneral Computer ScienceSturmian wordSturmian wordsFunction (mathematics)Critical point (mathematics)Theoretical Computer ScienceCombinatoricsCombinatorics on wordssymbols.namesakeBounded functionWeierstrass factorization theoremsymbolsFibonacci wordWord (group theory)MathematicsComputer Science(all)Theoretical Computer Science
researchProduct

Diffraction by m-bonacci gratings

2015

We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these nonconventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and …

DiffractionPhysicsFibonacci numberbusiness.industryGeneralizationMotivational strategyPhysics::OpticsGeneral Physics and AstronomyFraunhofer diffractionSet (abstract data type)Fibonaccisymbols.namesakeOpticsSimple (abstract algebra)Basic researchFISICA APLICADAsymbolsAperiodic sequencebusinessDiffraction
researchProduct

Combinatorial isomorphism between Fibonacci classes

2008

Abstract In 1985 Simion and Schmidt showed that the set S n (T 3) of length n permutations avoiding the set of patterns T 3={123, 132, 213} is counted by (the second order) Fibonacci numbers. They also presented a constructive bijection between the set F n–1 of length (n–1) binary strings with no two consecutive 1s and S n (T 3). In 2005, Egge and Mansour generalized the first Simion-Simion’s result and showed that S n (T p ), the set of permutations avoiding the patterns T p ={12…p, 132, 213}, is counted by the (p–1)th order Fibonacci numbers. In this paper we extend the second Simion-Schmidt’s result by giving a bijection between the set of length (n–1) binary strings with no (p–1) consec…

Discrete mathematicsAlgebra and Number TheoryFibonacci numberApplied MathematicsHamiltonian pathCombinatoricsSet (abstract data type)Gray codesymbols.namesakeBijectionsymbolsOrder (group theory)IsomorphismBinary stringsAnalysisMathematicsJournal of Discrete Mathematical Sciences and Cryptography
researchProduct

Classical sequences revisited with permutations avoiding dotted pattern

2011

International audience; Inspired by the definition of the barred pattern-avoiding permutation, we introduce the new concept of dotted pattern for permutations. We investigate permutations classes avoiding dotted patterns of length at most 3, possibly along with other classical patterns. We deduce some enumerating results which allow us to exhibit new families of permutations counted by the classical sequences: 2^n, Catalan, Motzkin, Pell, Fibonacci, Fine, Riordan, Padovan, Eulerian.

Discrete mathematicsFibonacci numberMathematics::CombinatoricsApplied Mathematics010102 general mathematicsEulerian path[ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]0102 computer and information sciences[INFO.INFO-DM]Computer Science [cs]/Discrete Mathematics [cs.DM][ MATH.MATH-CO ] Mathematics [math]/Combinatorics [math.CO]01 natural sciencesTheoretical Computer ScienceCombinatorics[MATH.MATH-CO] Mathematics [math]/Combinatorics [math.CO]symbols.namesakePermutation[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]Computational Theory and Mathematics010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]symbolsDiscrete Mathematics and CombinatoricsGeometry and Topology0101 mathematicsMathematics
researchProduct

Circular sturmian words and Hopcroft’s algorithm

2009

AbstractIn order to analyze some extremal cases of Hopcroft’s algorithm, we investigate the relationships between the combinatorial properties of a circular sturmian word (x) and the run of the algorithm on the cyclic automaton Ax associated to (x). The combinatorial properties of words taken into account make use of sturmian morphisms and give rise to the notion of reduction tree of a circular sturmian word. We prove that the shape of this tree uniquely characterizes the word itself. The properties of the run of Hopcroft’s algorithm are expressed in terms of the derivation tree of the automaton, which is a tree that represents the refinement process that, in the execution of Hopcroft’s alg…

Discrete mathematicsReduction (recursion theory)Fibonacci numberGeneral Computer ScienceHopcroft'algorithmSturmian wordSturmian wordSturmian morphismsTheoretical Computer ScienceCombinatoricsTree (descriptive set theory)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESComputer Science::Discrete MathematicsDeterministic automatonHopcroft’s minimization algorithmCircular sturmian wordsTree automatonDeterministic finite state automataTime complexityAlgorithmComputer Science::Formal Languages and Automata TheoryWord (group theory)Computer Science(all)MathematicsTheoretical Computer Science
researchProduct

Factorizations of the Fibonacci Infinite Word

2015

The aim of this note is to survey the factorizations of the Fibonacci infinite word that make use of the Fibonacci words and other related words, and to show that all these factorizations can be easily derived in sequence starting from elementary properties of the Fibonacci numbers.

FOS: Computer and information sciencesDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Crochemore factorizationComputer Science - Formal Languages and Automata Theory68R15Fibonacci wordLempel-Ziv factorizationLyndon factorizationFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - CombinatoricsZeckendorf representationCrochemore factorization; Fibonacci word; Lempel-Ziv factorization; Lyndon factorization; Zeckendorf representation; Discrete Mathematics and CombinatoricsCombinatorics (math.CO)Computer Science - Discrete Mathematics
researchProduct