Search results for "FOS"
showing 10 items of 15075 documents
Angular dependence of the domain wall depinning field in the sensors with segmented corners
2017
Rotating domain wall based sensors that have recently been developed are based on a segmented looping geometry. In order to determine the crucial pinning of domain walls in this special geometry, we investigate the depinning under different angles of an applied magnetic field and obtain the angular dependence of the depinning field of the domain walls. Due to the geometry, the depinning field not only exhibits a 180$^\circ$-periodicity but a more complex dependence on the angle. The depinning field depends on two different angles associated with the initial state and the segmented geometry of the corner. We find that depending on the angle of the applied field two different switching proces…
Controlled turbulence regime of electron cyclotron resonance ion source for improved multicharged ion performance
2020
Fundamental studies of excitation and non-linear evolution of kinetic instabilities of strongly nonequlibrium hot plasmas confined in open magnetic traps suggest new opportunities for fine-tuning of conventional electron cyclotron resonance (ECR) ion sources. These devices are widely used for the production of particle beams of high charge state ions. Operating the ion source in controlled turbulence regime allows increasing the absorbed power density and therefore the volumetric plasma energy content in the dense part of the discharge surrounded by the ECR surface, which leads to enhanced beam currents of high charge state ions. We report experiments at the ECR ion source at the JYFL accel…
High pressure crystal structures of orthovanadates and their properties
2020
Pressure-induced phase transitions in orthovanadates have led to interesting physical phenomena. The observed transitions usually involve large volume collapses and drastic changes in the electronic and vibrational properties of the materials. In some cases, the phase transitions implicate coordination changes in vanadium, which has important consequences in the physical properties of vanadates. In this Perspective, we explore the current knowledge of the behavior of MVO4 vanadates under compression. In particular, we summarize studies of the structural, vibrational, and electronic properties and a few illustrative examples of high-pressure research in the compounds of interest are discusse…
Magnetic domain structure of La0.7Sr0.3MnO 3 thin-films probed at variable temperature with scanning electron microscopy with polarization analysis
2013
The domain configuration of 50 nm thick La0.7Sr0.3MnO3 films has been directly investigated using scanning electron microscopy with polarization analysis (SEMPA), with magnetic contrast obtained without the requirement for prior surface preparation. The large scale domain structure reflects a primarily four-fold anisotropy, with a small uniaxial component, consistent with magneto-optic Kerr effect measurements. We also determine the domain transition profile and find it to be in agreement with previous estimates of the domain wall width in this material. The temperature dependence of the image contrast is investigated and compared to superconducting-quantum interference device magnetometry …
Spin Hall magnetoresistance in antiferromagnetic insulators
2020
Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $\alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an ext…
An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit
2020
We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 {\mu}m, and magnetic domain governed decay lengths of 175 nm for the low frequency magnons, through electrical transport measurements demonstrating that the introduction of non-magnetic dopants does not strongly reduce the transport…
Tailoring the anomalous Hall effect of SrRuO$_3$ thin films by strain: a first principles study
2021
Motivated by the recently observed unconventional Hall effect in ultra-thin films of ferromagnetic SrRuO$_3$ (SRO) we investigate the effect of strain-induced oxygen octahedral distortion in the electronic structure and anomalous Hall response of the SRO ultra-thin films by virtue of density functional theory calculations. Our findings reveal that the ferromagnetic SRO films grown on SrTiO$_3$ (in-plane strain of $-$0.47$\%$) have an orthorhombic (both tilting and rotation) distorted structure and with an increasing amount of substrate-induced compressive strain the octahedral tilting angle is found to be suppressed gradually, with SRO films grown on NdGaO$_3$ (in-plane strain of $-$1.7$\%$…
Large Zero-Field Cooled Exchange-Bias in BulkMn2PtGa
2013
We report a large exchange-bias (EB) effect after zero-field cooling the new tetragonal Heusler compound Mn2PtGa from the paramagnetic state. The first-principle calculation and the magnetic measurements reveal that Mn2PtGa orders ferrimagnetically with some ferromagnetic (FM) inclusions. We show that ferrimagnetic (FI) ordering is essential to isothermally induce the exchange anisotropy needed for the zero-field cooled (ZFC) EB during the virgin magnetization process. The complex magnetic behavior at low temperatures is characterized by the coexistence of a field induced irreversible magnetic behavior and a spin-glass-like phase. The field induced irreversibility originates from an unusual…
Phase segregation in Mg$_{x}$Zn$_{1-x}$O probed by optical absorption and photoluminescence at high pressure
2017
The appearance of segregated wurtzite Mg$_x$Zn$_{1-x}$O with low Mg content in thin films with $x>0.3$ affected by phase separation, cannot be reliably probed with crystallographic techniques owing to its embedded nanocrystalline configuration. Here we show a high-pressure approach which exploits the distinctive behaviors under pressure of wurtzite Mg$_x$Zn$_{1-x}$O thin films with different Mg contents to unveil phase segregation for $x>0.3$. By using ambient conditions photoluminescence (PL), and with optical absorption and PL under high pressure for $x=0.3$ we show that the appearance of a segregated wurtzite phase with a magnesium content of x $\sim$ 0.1 is inherent to the wurtzit…
Effective strain manipulation of the antiferromagnetic state of polycrystalline NiO
2021
As a candidate material for applications such as magnetic memory, polycrystalline antiferromagnets offer the same robustness to external magnetic fields, THz spin dynamics, and lack of stray field as their single crystalline counterparts, but without the limitation of epitaxial growth and lattice matched substrates. Here, we first report the detection of the average Neel vector orientiation in polycrystalline NiO via spin Hall magnetoresistance (SMR). Secondly, by applying strain through a piezo-electric substrate, we reduce the critical magnetic field required to reach a saturation of the SMR signal, indicating a change of the anisotropy. Our results are consistent with polycrystalline NiO…