Search results for "FUEL-CELLS"
showing 5 items of 5 documents
Electrosynthesis of Ce–Co Mixed Oxide Nanotubes with High Aspect Ratio and Tunable Composition
2008
Cerium oxide and cobalt oxides have attracted the interest of several researchers due to their potential application in several technological fields electrochromism, lithium batteries, catalysis, etc.. Ceria has been used as a promoter in the so-called “three-way catalyst” for the control of toxic emission from automobile exhaust. The promotion consists of the enhancement of the noble metal dispersion, as well as stabilization of the supporting medium toward thermal sintering. 1,2 A direct catalytic effect of CeO2 in chemical processes such as water–gas shift reaction or NOx decomposition has been also evidenced. 3,4
Defect interaction and local structural distortions in Mg-doped LaGaO3: A combined experimental and theoretical study
2017
A combined experimental and theoretical study of Mg-doped LaGaO3 electrolyte was carried out, with the aim to unveil the interaction between oxygen vacancy (Vo) and perovskite B site cations. LaGaO3 (LG) and LaGa0.875Mg0.125O2.938 (LGM0125) samples were comprehensively characterized by X-ray absorption spectroscopy (XAS) and X-ray diffraction, in order to investigate short- and long-range structures of both undoped and Mg-doped materials. XAS analysis evidenced a preferential Ga-Vo interaction in LGM0125, confirmed by periodic hybrid density functional theory calculations, which were combined with a symmetry-independent classes (SICs) approach in order to (a) obtain a detailed picture of th…
Crystal Structure and Local Dynamics in Tetrahedral Proton-Conducting La1-xBa1+xGaO4
2010
La1-xBa1+xGaO4-0 (LBG) compounds, based on unconnected GaO4 moieties, were recently proposed as proton conductors. Protonic defects in the lattice are inserted through self-doping with Ba2+, to create oxygen vacancies subsequently filled by hydroxyl ions. We present a combined structural analysis on self-doped LBG using X-ray diffraction (XRD) and X-ray absorption (EXAFS): these results unravel the finer structural details on the short-range and long-range scales, and they are correlated with the dynamical properties of protonic conduction coming from vibrational spectroscopy. The structure of the GaO4 groups is independent of the oxide composition. On hydration, an array of short intertetr…
Evaluation of a new Cr-free alloy as interconnect material for hydrogen production by high temperature water vapour electrolysis: Study in cathode at…
2012
International audience; For economic and ecological reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800 degrees C enables the use of metallic materials as interconnects. High temperature corrosion behaviour and electrical conductivity of a new Cr-free Fe-Ni-Co alloy were tested in cathode atmosphere (H-2/H2O) at 800 degrees C. The alloy exhibits a poor oxidation resistance but an excelle…
Optimisation of metallic interconnects for hydrogen production by high temperature water vapour electrolysis
2012
For economical and environmental reasons, hydrogen is considered as a major energetic vector for the future. Hydrogen production via high temperature water vapour electrolysis (HTE) is a promising technology. A major technical difficulty related to high temperature water vapour electrolysis is the development of interconnects working efficiently for a long period. Working temperature of 800°C enables the use of metallic materials as interconnects. Chromia forming alloys are among the best candidates. The interconnect material chosen in the present study is a ferritic stainless steel with 18% chromium content. High temperature corrosion resistance and electrical conductivity of the alloy was…