Search results for "Fa"
showing 10 items of 64713 documents
Hole localization in thermoelectric half-Heusler (Zr0.5Hf0.5)Co(Sb1−xSn ) thin films
2019
Abstract The (Ti, Zr, Hf)Co(Sb 1 − x Snx) material class has recently come into focus as an attractive p-type high-temperature thermoelectric material. This study experimentally demonstrates that homogeneous, highly textured (Zr0.5Hf0.5)Co(Sb 1 − x Snx) thin films can be grown on single crystalline MgO. By varying the sputter power, samples with both positive and negative Seebeck coefficient can be grown. The underlying reason for the sign change is the segregation of Sn nano-inclusions, which lower the effective doping of the half-Heusler matrix. Similarly the Hall constant also switches sign at low temperatures, which is modeled assuming semi-metal behavior and low temperature hole locali…
Half-Heusler materials as model systems for phase-separated thermoelectrics
2015
Semiconducting half-Heusler compounds based on NiSn and CoSb have attracted attention because of their good performance as thermoelectric materials. Nanostructuring of the materials was experimentally established through phase separation in (T1−x′Tx″)T(M1−yMy′) alloys when mixing different transition metals (T, T′, T″) or main group elements (M, M′). The electric transport properties of such alloys depend not only on their micro- or nanostructure but also on the atomic-scale electronic structure. In the present work, the influence of the band structure and density of states on the electronic transport and thermoelectric properties is investigated in detail for the constituents of phase-sepa…
Acoustic vibrations of monoclinic zirconia nanocrystals
2011
International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…
Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy
2016
We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…
Barrier inhomogeneity in vertical Schottky diodes on free standing gallium nitride
2019
Abstract In this paper, the electrical behavior of a Ni/Au Schottky barrier on free standing GaN has been studied employing a variety of techniques and correlated with the material and interface quality. The temperature dependence of the ideality factor (n) and of the Schottky barrier height (ΦB) revealed a spatial inhomogeneity of the barrier. This behavior has been described by means of the Tung's model on inhomogeneous Schottky barriers. The origin of the barrier inhomogeneity can be likely associated to the surface quality of the GaN epilayer or to microstructure of the Ni/GaN interface.
The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films
2021
Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …
Structural characterization of TiO2/TiN O (δ-doping) heterostructures on (1 1 0)TiO2 substrates
2003
Abstract TiO2/TiNxOy δ-doping structures were grown on the top of (1 1 0)TiO2 rutile substrates by low pressure metal-organic vapor phase epitaxy (LP-MOVPE) technique at 750 °C. The samples were analyzed by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and X-ray diffraction techniques (rocking curves and φ-scans). The presence of satellites in the (1 1 0)TiO2 rocking curve revealed the epitaxial growth of 10 period δ-doping structures. The thickness of the TiO2 layers, 84 nm, was deduced from the satellites period. HRTEM observations showed around 1.5 nm thick δ-doping layers, where the presence of nitrogen was detected by EELS. The analy…
Experimental and numerical investigation on a new FSW based metal to composite joining technique
2018
Abstract In the last decades, different techniques were proposed to join aluminum sheets with composites materials. Each of them has advantages and weak points over the others and new techniques and patents are continuously developed to overcome these difficulties. In this paper an experimental and numerical investigation on a new Friction Stir Welding based approach to mechanically join AA6082-T6 to self-reinforced polypropylene is presented. The aluminum sheet is pre-holed along both the sides of the weld line and a pinless tool generates the heat and pressure needed to prompt back-extrusion of the composite. New experimental fixtures and hole designs were investigated in order to enhance…
Influence of spray trajectories on characteristics of cold-sprayed copper deposits
2021
Abstract Industrial robots are widely used in cold spray (CS) as well as thermal spray to produce various coatings by precisely controlling kinematic parameters during the process. However, the robot trajectory and its effect on the characteristics of CS deposits are important, but not fully studied. This article introduces four typical spray trajectories, including zigzag path, cross path, parallel path, and spiral path, to elaborate thick CS Cu deposits, and characterizes the corresponding Cu deposits, respectively. The experimental results revealed that the spray trajectories have a major influence on the associated thermal history and the residual stress distribution. However, no signif…
Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel
2017
Abstract The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn) 3 O 4 /Cr 2 O 3 scale formed on the polished samples whereas external Fe 3 O 4 and (Cr,Fe) 2 O 3 oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means o…