Search results for "Fa"

showing 10 items of 64713 documents

Hole localization in thermoelectric half-Heusler (Zr0.5Hf0.5)Co(Sb1−xSn ) thin films

2019

Abstract The (Ti, Zr, Hf)Co(Sb 1 − x Snx) material class has recently come into focus as an attractive p-type high-temperature thermoelectric material. This study experimentally demonstrates that homogeneous, highly textured (Zr0.5Hf0.5)Co(Sb 1 − x Snx) thin films can be grown on single crystalline MgO. By varying the sputter power, samples with both positive and negative Seebeck coefficient can be grown. The underlying reason for the sign change is the segregation of Sn nano-inclusions, which lower the effective doping of the half-Heusler matrix. Similarly the Hall constant also switches sign at low temperatures, which is modeled assuming semi-metal behavior and low temperature hole locali…

010302 applied physicsMaterials scienceCondensed matter physicsDopingMetals and Alloys02 engineering and technologySurfaces and Interfaces021001 nanoscience & nanotechnologyThermoelectric materials01 natural sciencesAcceptorSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSputteringElectrical resistivity and conductivitySeebeck coefficient0103 physical sciencesThermoelectric effectMaterials ChemistryThin film0210 nano-technologyThin Solid Films
researchProduct

Half-Heusler materials as model systems for phase-separated thermoelectrics

2015

Semiconducting half-Heusler compounds based on NiSn and CoSb have attracted attention because of their good performance as thermoelectric materials. Nanostructuring of the materials was experimentally established through phase separation in (T1−x′Tx″)T(M1−yMy′) alloys when mixing different transition metals (T, T′, T″) or main group elements (M, M′). The electric transport properties of such alloys depend not only on their micro- or nanostructure but also on the atomic-scale electronic structure. In the present work, the influence of the band structure and density of states on the electronic transport and thermoelectric properties is investigated in detail for the constituents of phase-sepa…

010302 applied physicsMaterials scienceCondensed matter physicsFermi energy02 engineering and technologySurfaces and InterfacesElectronic structureCubic crystal system021001 nanoscience & nanotechnologyCondensed Matter PhysicsThermoelectric materials01 natural sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsPhase (matter)0103 physical sciencesThermoelectric effectMaterials ChemistryDensity of statesElectrical and Electronic Engineering0210 nano-technologyElectronic band structurephysica status solidi (a)
researchProduct

Acoustic vibrations of monoclinic zirconia nanocrystals

2011

International audience; Polarized low-frequency Raman spectra originating from confined acoustic vibrations are reported for monoclinic ZrO2 nanoparticles with a narrow size distribution synthesized from a continuous supercritical water process. The monoclinic lattice structure is taken into account for the interpretation of the spectra by comparing with isotropic and anisotropic continuum elasticity calculations for monodomain nanocrystals. The various mechanisms leading to the broadening of the Raman peaks are discussed. We demonstrate that an accurate determination of the size distribution of the nanoparticles is possible using the Raman peak due to the fundamental breathing vibration wh…

010302 applied physicsMaterials scienceCondensed matter physicsIsotropy[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]02 engineering and technologyCrystal structure021001 nanoscience & nanotechnology01 natural sciencesSpectral lineSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographysymbols.namesakeGeneral Energy0103 physical sciencessymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Cubic zirconiaPhysical and Theoretical ChemistryElasticity (economics)0210 nano-technologyAnisotropyRaman spectroscopyMonoclinic crystal system
researchProduct

Magnetization reversal of the domain structure in the anti-perovskite nitride Co3FeN investigated by high-resolution X-ray microscopy

2016

We performed X-ray magnetic circular dichroism (XMCD) photoemission electron microscopy imaging to reveal the magnetic domain structure of anti-perovskite nitride Co3FeN exhibiting a negative spin polarization. In square and disc patterns, we systematically and quantitatively determined the statistics of the stable states as a function of geometry. By direct imaging during the application of a magnetic field, we revealed the magnetic reversal process in a spatially resolved manner. We compared the hysteresis on the continuous area and the square patterns from the magnetic field-dependent XMCD ratio, which can be explained as resulting from the effect of the shape anisotropy, present in nano…

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainGeneral Physics and AstronomyMagnetic resonance force microscopyLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnologyMagnetic hysteresis01 natural sciencesMagnetic susceptibilityCondensed Matter::Materials ScienceParamagnetismMagnetic anisotropyX-ray magnetic circular dichroism0103 physical sciencesMagnetic force microscope0210 nano-technologyJournal of Applied Physics
researchProduct

Barrier inhomogeneity in vertical Schottky diodes on free standing gallium nitride

2019

Abstract In this paper, the electrical behavior of a Ni/Au Schottky barrier on free standing GaN has been studied employing a variety of techniques and correlated with the material and interface quality. The temperature dependence of the ideality factor (n) and of the Schottky barrier height (ΦB) revealed a spatial inhomogeneity of the barrier. This behavior has been described by means of the Tung's model on inhomogeneous Schottky barriers. The origin of the barrier inhomogeneity can be likely associated to the surface quality of the GaN epilayer or to microstructure of the Ni/GaN interface.

010302 applied physicsMaterials scienceCondensed matter physicsMechanical EngineeringSchottky barrierSchottky diodeGallium nitride02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesFree standing GaNchemistry.chemical_compoundQuality (physics)chemistryMechanics of MaterialsNi/GaN interface0103 physical sciencesGeneral Materials ScienceBarrier spatial inhomogeneity0210 nano-technologySchottky barrier
researchProduct

The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films

2021

Abstract Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while …

010302 applied physicsMaterials scienceDiamond-like carbonDopingAnalytical chemistrychemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesSurfaces Coatings and FilmsChromiumNickelsymbols.namesakechemistry0103 physical sciencessymbolsSurface roughness0210 nano-technologyRaman spectroscopyInstrumentationCarbonVacuum
researchProduct

Structural characterization of TiO2/TiN O (δ-doping) heterostructures on (1 1 0)TiO2 substrates

2003

Abstract TiO2/TiNxOy δ-doping structures were grown on the top of (1 1 0)TiO2 rutile substrates by low pressure metal-organic vapor phase epitaxy (LP-MOVPE) technique at 750 °C. The samples were analyzed by high resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS) and X-ray diffraction techniques (rocking curves and φ-scans). The presence of satellites in the (1 1 0)TiO2 rocking curve revealed the epitaxial growth of 10 period δ-doping structures. The thickness of the TiO2 layers, 84 nm, was deduced from the satellites period. HRTEM observations showed around 1.5 nm thick δ-doping layers, where the presence of nitrogen was detected by EELS. The analy…

010302 applied physicsMaterials scienceElectron energy loss spectroscopyGeneral Physics and Astronomy02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsEpitaxy01 natural sciencesElectron spectroscopySurfaces Coatings and FilmsCrystallographySurface coatingTransmission electron microscopy0103 physical sciencesX-ray crystallography[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Metalorganic vapour phase epitaxy0210 nano-technologyHigh-resolution transmission electron microscopyComputingMilieux_MISCELLANEOUS
researchProduct

Experimental and numerical investigation on a new FSW based metal to composite joining technique

2018

Abstract In the last decades, different techniques were proposed to join aluminum sheets with composites materials. Each of them has advantages and weak points over the others and new techniques and patents are continuously developed to overcome these difficulties. In this paper an experimental and numerical investigation on a new Friction Stir Welding based approach to mechanically join AA6082-T6 to self-reinforced polypropylene is presented. The aluminum sheet is pre-holed along both the sides of the weld line and a pinless tool generates the heat and pressure needed to prompt back-extrusion of the composite. New experimental fixtures and hole designs were investigated in order to enhance…

010302 applied physicsMaterials scienceFSWStrategy and ManagementComposite numberAluminum AlloyProcess (computing)Mechanical engineeringWeld line02 engineering and technologyManagement Science and Operations ResearchMechanical resistance021001 nanoscience & nanotechnology01 natural sciencesIndustrial and Manufacturing EngineeringStrategy and Management1409 Tourism Leisure and Hospitality Management0103 physical sciencesFriction stir weldingJoin (sigma algebra)Dissimilar jointThermoplastic compositePolypropylene0210 nano-technologySettore ING-IND/16 - Tecnologie E Sistemi Di LavorazioneJournal of Manufacturing Processes
researchProduct

Influence of spray trajectories on characteristics of cold-sprayed copper deposits

2021

Abstract Industrial robots are widely used in cold spray (CS) as well as thermal spray to produce various coatings by precisely controlling kinematic parameters during the process. However, the robot trajectory and its effect on the characteristics of CS deposits are important, but not fully studied. This article introduces four typical spray trajectories, including zigzag path, cross path, parallel path, and spiral path, to elaborate thick CS Cu deposits, and characterizes the corresponding Cu deposits, respectively. The experimental results revealed that the spray trajectories have a major influence on the associated thermal history and the residual stress distribution. However, no signif…

010302 applied physicsMaterials scienceGas dynamic cold spray02 engineering and technologySurfaces and InterfacesGeneral Chemistryengineering.materialDeformation (meteorology)021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and FilmsZigzagCoatingResidual stress0103 physical sciencesThermalMaterials ChemistryTrajectoryengineeringComposite material0210 nano-technologyThermal sprayingSurface and Coatings Technology
researchProduct

Effect of surface finishing on the oxidation behaviour of a ferritic stainless steel

2017

Abstract The corrosion behaviour and the oxidation mechanism of a ferritic stainless steel, K41X (AISI 441), were evaluated at 800 °C in water vapour hydrogen enriched atmosphere. Mirror polished samples were compared to as-rolled K41X material. Two different oxidation behaviours were observed depending on the surface finishing: a protective double (Cr,Mn) 3 O 4 /Cr 2 O 3 scale formed on the polished samples whereas external Fe 3 O 4 and (Cr,Fe) 2 O 3 oxides grew on the raw steel. Moreover, isotopic marker experiments combined with SIMS analyses revealed different growth mechanisms. The influence of surface finishing on the corrosion products and growth mechanisms was apprehended by means o…

010302 applied physicsMaterials scienceHydrogenMetallurgyGeneral Physics and AstronomyPolishingchemistry.chemical_element02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsMicrostructure01 natural sciencesElectron spectroscopySurfaces Coatings and FilmsCorrosionX-ray photoelectron spectroscopychemistryResidual stress0103 physical sciences0210 nano-technologySurface finishingApplied Surface Science
researchProduct