Search results for "Feature extraction"
showing 10 items of 275 documents
Text localization from photos
2009
In this paper a new text extraction algorithm is proposed. In real scenes the text is usually overlapped or is part of the background. To identify the text regions, in complex conditions, a method exploiting a “multi-resolution feature based method” for extracting text with undefined dimension has been developed. Once identified, the multi-resolution information are merged and skimmed through a set of Support Vector Machines (SVM). The tests and the comparisons with other techniques, performed on heterogeneous images, have shown the effectiveness of the proposed.
Automatic Volumetric Liver Segmentation Using Texture Based Region Growing
2010
In this paper an automatic texture based volumetric region growing method for liver segmentation is proposed. 3D seeded region growing is based on texture features with the automatic selection of the seed voxel inside the liver organ and the automatic threshold value computation for the region growing stop condition. Co-occurrence 3D texture features are extracted from CT abdominal volumes and the seeded region growing algorithm is based on statistics in the features space. Each CT volume is composed by 230 slices, having 512 x 512 pixels as spatial resolution, and 12-bit gray level resolution. In this initial feasible study, 5 healthy volunteer acquisitions has been used. Tests have been p…
Automatic differentiation of melanoma from dysplastic nevi.
2015
International audience; Malignant melanoma causes the majority of deaths related to skin cancer. Nevertheless, it is the most treatable one, depending on its early diagnosis. The early prognosis is a challenging task for both clinicians and dermatologist, due to the characteristic similarities of melanoma with other skin lesions such as dysplastic nevi. In the past decades, several computerized lesion analysis algorithms have been proposed by the research community for detection of melanoma. These algorithms mostly focus on differentiating melanoma from benign lesions and few have considered the case of melanoma against dysplastic nevi. In this paper, we consider the most challenging task a…
Multi-temporal and Multi-source Remote Sensing Image Classification by Nonlinear Relative Normalization
2016
Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corres…
Channel Gain Cartography via Mixture of Experts
2020
In order to estimate the channel gain (CG) between the locations of an arbitrary transceiver pair across a geographic area of interest, CG maps can be constructed from spatially distributed sensor measurements. Most approaches to build such spectrum maps are location-based, meaning that the input variable to the estimating function is a pair of spatial locations. The performance of such maps depends critically on the ability of the sensors to determine their positions, which may be drastically impaired if the positioning pilot signals are affected by multi-path channels. An alternative location-free approach was recently proposed for spectrum power maps, where the input variable to the maps…
Spatial noise-aware temperature retrieval from infrared sounder data
2020
In this paper we present a combined strategy for the retrieval of atmospheric profiles from infrared sounders. The approach considers the spatial information and a noise-dependent dimensionality reduction approach. The extracted features are fed into a canonical linear regression. We compare Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used for these purposes but our analysis shows that one can gain significant improvements of the error rates when using…
SHARP: Environment and Person Independent Activity Recognition with Commodity IEEE 802.11 Access Points
2022
In this article we present SHARP, an original approach for obtaining human activity recognition (HAR) through the use of commercial IEEE 802.11 (Wi-Fi) devices. SHARP grants the possibility to discern the activities of different persons, across different time-spans and environments. To achieve this, we devise a new technique to clean and process the channel frequency response (CFR) phase of the Wi-Fi channel, obtaining an estimate of the Doppler shift at a radio monitor device. The Doppler shift reveals the presence of moving scatterers in the environment, while not being affected by (environment-specific) static objects. SHARP is trained on data collected as a person performs seven differe…
Emergency Detection with Environment Sound Using Deep Convolutional Neural Networks
2020
In this paper, we propose a generic emergency detection system using only the sound produced in the environment. For this task, we employ multiple audio feature extraction techniques like the mel-frequency cepstral coefficients, gammatone frequency cepstral coefficients, constant Q-transform and chromagram. After feature extraction, a deep convolutional neural network (CNN) is used to classify an audio signal as a potential emergency situation or not. The entire model is based on our previous work that sets the new state of the art in the environment sound classification (ESC) task (Our paper is under review in the IEEE/ACM Transactions on Audio, Speech and Language Processing and also avai…
An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms
2008
This paper presents an automatic system for the analysis and classification of atrial fibrillation (AF) patterns from bipolar intracardiac signals. The system is made up of: 1) a feature- extraction module that defines and extracts a set of measures potentially useful for characterizing AF types on the basis of their degree of organization; 2) a feature-selection module (based on the Jeffries-Matusita distance and a branch and bound search algorithm) identifying the best subset of features for discriminating different AF types; and 3) a support vector machine technique-based classification module that automatically discriminates the AF types according to the Wells' criteria. The automatic s…
See how it feels to move: Relationships between movement characteristics and perception of emotions in dance
2020
Music makes humans move in ways found to relate to, for instance, musical characteristics, personality, or emotional content of the music. In this study, we investigated associations between embodiments of musical emotions and the perception thereof. After collecting motion capture data of dancers moving to emotionally distinct musical stimuli, silent stick-figure animations were rated by a set of observers regarding perceived discrete emotions, while 10 movement features were computationally extracted from the motion capture data. Results indicate kinematic profiles—emotion-specific sets of movement characteristics—that furthermore conform with dimensional models of valence and arousal, su…