Search results for "Feynman integral"
showing 10 items of 20 documents
From elliptic curves to Feynman integrals
2018
In this talk we discuss Feynman integrals which are related to elliptic curves. We show with the help of an explicit example that in the set of master integrals more than one elliptic curve may occur. The technique of maximal cuts is a useful tool to identify the elliptic curves. By a suitable transformation of the master integrals the system of differential equations for our example can be brought into a form linear in $\varepsilon$, where the $\varepsilon^0$-term is strictly lower-triangular. This system is easily solved in terms of iterated integrals.
Vanishing of certain cuts or residues of loop integrals with higher powers of the propagators
2019
Starting from two-loops, there are Feynman integrals with higher powers of the propagators. They arise from self-energy insertions on internal lines. Within the loop-tree duality approach or within methods based on numerical unitarity one needs (among other things) the residue when a raised propagator goes on-shell. We show that for renormalised quantities in the on-shell scheme these residues can be made to vanish already at the integrand level.
A new method for computing one-loop integrals
1994
We present a new program package for calculating one-loop Feynman integrals, based on a new method avoiding Feynman parametrization and the contraction due to Passarino and Veltman. The package is calculating one-, two- and three-point functions both algebraically and numerically to all tensor cases. This program is written as a package for Maple. An additional Mathematica version is planned later.
oneloop 2.0 — A program package calculating one-loop integrals
1997
We present an improved version of our program package oneloop which -- written as a package for MAPLE -- solves one-loop Feynman integrals. The package is calculating one-, two- and three-point functions both algebraically and numerically to any tensor rank. In addition to the original version oneloop 2.0 also calculates infrared divergent integrals. Higher powers of propagator terms and the $O(\eps)$ parts relevant for two-loop calculations are now supported.
Blowing up Feynman integrals
2008
In this talk we discuss sector decomposition. This is a method to disentangle overlapping singularities through a sequence of blow-ups. We report on an open-source implementation of this algorithm to compute numerically the Laurent expansion of divergent multi-loop integrals. We also show how this method can be used to prove a theorem which relates the coefficients of the Laurent series of dimensionally regulated multi-loop integrals to periods.
The planar double box integral for top pair production with a closed top loop to all orders in the dimensional regularisation parameter
2018
We compute systematically for the planar double box Feynman integral relevant to top pair production with a closed top loop the Laurent expansion in the dimensional regularisation parameter $\varepsilon$. This is done by transforming the system of differential equations for this integral and all its sub-topologies to a form linear in $\varepsilon$, where the $\varepsilon^0$-part is strictly lower triangular. This system is easily solved order by order in the dimensional regularisation parameter $\varepsilon$. This is an example of an elliptic multi-scale integral involving several elliptic sub-topologies. Our methods are applicable to similar problems.
The $\varepsilon$-form of the differential equations for Feynman integrals in the elliptic case
2018
Feynman integrals are easily solved if their system of differential equations is in $\varepsilon$-form. In this letter we show by the explicit example of the kite integral family that an $\varepsilon$-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The $\varepsilon$-form is obtained by a (non-algebraic) change of basis for the master integrals.
Analytic continuation and numerical evaluation of the kite integral and the equal mass sunrise integral
2017
We study the analytic continuation of Feynman integrals from the kite family, expressed in terms of elliptic generalisations of (multiple) polylogarithms. Expressed in this way, the Feynman integrals are functions of two periods of an elliptic curve. We show that all what is required is just the analytic continuation of these two periods. We present an explicit formula for the two periods for all values of $t \in {\mathbb R}$. Furthermore, the nome $q$ of the elliptic curve satisfies over the complete range in $t$ the inequality $|q|\le 1$, where $|q|=1$ is attained only at the singular points $t\in\{m^2,9m^2,\infty\}$. This ensures the convergence of the $q$-series expansion of the $\mathr…
Analytic results for planar three-loop integrals for massive form factors
2016
We use the method of differential equations to analytically evaluate all planar three-loop Feynman integrals relevant for form factor calculations involving massive particles. Our results for ninety master integrals at general $q^2$ are expressed in terms of multiple polylogarithms, and results for fiftyone master integrals at the threshold $q^2=4m^2$ are expressed in terms of multiple polylogarithms of argument one, with indices equal to zero or to a sixth root of unity.
On a Class of Feynman Integrals Evaluating to Iterated Integrals of Modular Forms
2019
In this talk we discuss a class of Feynman integrals, which can be expressed to all orders in the dimensional regularisation parameter as iterated integrals of modular forms. We review the mathematical prerequisites related to elliptic curves and modular forms. Feynman integrals, which evaluate to iterated integrals of modular forms go beyond the class of multiple polylogarithms. Nevertheless, we may bring for all examples considered the associated system of differential equations by a non-algebraic transformation to an \(\varepsilon \)-form, which makes a solution in terms of iterated integrals immediate.