Search results for "Field"

showing 10 items of 15048 documents

Quantitative analysis of magnetization reversal in Ni thin films on unpoled and poled (0 1 1) [PbMg1/3Nb2/3O3]0.68–[PbTiO3]0.32piezoelectric substrat…

2016

The field angle dependence of the magnetization reversal in 20 nm thick polycrystalline Ni films grown on piezoelectric (0 1 1) [PbMg1/3Nb2/3O3](0.68)-[PbTiO3](0.32) (PMN-PT) substrates is analysed quantitatively to study the magnetic anisotropy induced in the film by poling the piezosubstrate. While the PMN-PT is in the unpoled state, the magnetization reversal is almost isotropic as expected from the polycrystalline nature of the film and corresponding to an orientation ratio (OR) of 1.2. The orientation ratio is obtained by fitting the angular dependence of normalized remanent magnetization to an adapted Stoner-Wohlfarth relation. Upon poling the piezosubstrate, a strong uniaxial anisotr…

010302 applied physicsMaterials scienceAcoustics and UltrasonicsCondensed matter physicsMagnetic momentbusiness.industryIsotropyPoling02 engineering and technologyCoercivity021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesPiezoelectricitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMagnetic anisotropyOpticsRemanence0103 physical sciencesddc:530FIELD0210 nano-technologyAnisotropybusinessJournal of Physics D: Applied Physics
researchProduct

Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3

2017

This work has been supported by the National Research Program in the framework of the project “Multifunctional Materials and composites, photonics and nanotechnology (IMIS2).”

010302 applied physicsMaterials scienceCondensed matter physicsAnalytical chemistryGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyPolarization (waves)01 natural sciencesElectric field0103 physical sciencesElectrocaloric effect:NATURAL SCIENCES:Physics [Research Subject Categories]PolarMaxwell relations0210 nano-technology
researchProduct

Influence of magnetization on the applied magnetic field in various AMR regenerators

2017

International audience; The aim of this work is to assess the influence of a magnetic sample on the applied magnetic field inside the air gap of a magnetic circuit. Different magnetic sources including an electromagnet, a permanent magnet in a soft ferromagnetic toroidal yoke, as well as 2D and 3D Halbach cylinders are considered, using a numerical model. Gadolinium is chosen as magnetic material for the sample, due to its strong magnetocaloric properties and its wide use in magnetic refrigeration prototypes. We find that using uniform theoretical demagnetizing factors for cylinders or spheres results in a deviation of less than 2% in the calculation of internal magnetic fields at temperatu…

010302 applied physicsMaterials scienceElectromagnetMagnetic domainMagnetic energyCondensed matter physics[SPI.NRJ]Engineering Sciences [physics]/Electric powerDemagnetizing fieldGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences[SPI.AUTO]Engineering Sciences [physics]/Automaticlaw.inventionCondensed Matter::Materials ScienceMagnetizationRemanencelaw0103 physical sciences[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]Magnetic pressure[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Single domain0210 nano-technologyJournal of Applied Physics
researchProduct

Evaluation of Vertical Fatigue Cracks by Means of Flying Laser Thermography

2019

The present paper proposes a new procedure to analyze the temperature field distribution during Flying Laser Spot and Laser Line Thermographic scanning (FLST, FLLT) of metallic components, in order to detect vertical surface cracks. The methodology exploits the changes in the temperature field produced by a vertical crack, acting as a barrier towards heat diffusion, when the laser approaches the defect. A number of small regions of interests (ROIs) is placed nearby and around the laser source. The average temperature from each ROI is then monitored during the laser scanning. Vertical cracks can be detected by analyzing and comparing the temperature fluctuations from each ROI when the laser …

010302 applied physicsMaterials scienceLaser scanningField (physics)Laser thermographyMechanical EngineeringAcousticsNon-destructive testingchemistry.chemical_elementLaser01 natural sciencesIR thermographylaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchinechemistryMechanics of MaterialsAluminiumlaw0103 physical sciencesSolid mechanicsThermographyEmissivityHead (vessel)Thermal analysis010301 acousticsJournal of Nondestructive Evaluation
researchProduct

Morphological and magnetic analysis of Fe nanostructures on W(110) by using scanning tunneling microscopy and Lorentz microscopy

2016

Abstract We investigated morphological features and magnetic properties of epitaxial Fe nanostructures (films, stripes and nanoparticles) on a W(110) surface with monoatomic steps preferentially along the direction. The nanostructures were prepared in ultra-high vacuum by using electron-beam evaporation and subsequent annealing at different temperatures. Scanning tunneling microscopy measurements in-situ revealed elongated Fe nanostructures with aspect ratios of up to . The observable shape and orientation (along or perpendicular to the monoatomic steps of the substrate) of the nanostructures depended substantially on the preparation parameters. By capping the system with 7 monolayers of Pt…

010302 applied physicsMaterials scienceNanostructureCondensed matter physicsAnnealing (metallurgy)General EngineeringGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnologyEpitaxy01 natural scienceslaw.inventionMagnetic fieldCondensed Matter::Materials ScienceCrystallographyMagnetizationlaw0103 physical sciencesMonolayerSingle domainScanning tunneling microscope0210 nano-technologyJapanese Journal of Applied Physics
researchProduct

Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy

2020

We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsNucleation02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonMagnetic fieldMagnetization[SPI]Engineering Sciences [physics]Domain wall (magnetism)Hall effect0103 physical sciencesIrradiation0210 nano-technologyCurrent densityComputingMilieux_MISCELLANEOUS
researchProduct

Impact of the interplay of piezoelectric strain and current-induced heating on the field-like spin–orbit torque in perpendicularly magnetized Ta/Co20…

2021

Spin–orbit torques (SOTs) are known to be the most efficient way to manipulate the magnetization direction by electrical currents. While, conventionally, one symmetry component of the SOTs, namely, the damping-like torque, was considered to play a primary role, recently, the significance of the other component, the field-like torque, has been revised, owing to the non-trivial dynamics it can induce in heavy metal/ferromagnet multilayers. In this work, we first discuss the unusual behavior of the field-like SOT in a Ta/CoFeB/Ta/MgO multilayer system with a reduced magnetic anisotropy and demonstrate an energy-efficient approach to manipulate the magnitude of the SOT effective fields. Finally…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Field (physics)Condensed matter physicsSpintronics02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesPiezoelectricitySymmetry (physics)Condensed Matter::Materials ScienceMagnetizationMagnetic anisotropyFerromagnetism0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics0210 nano-technologyAnisotropyApplied Physics Letters
researchProduct

2019

We systematically study the pump-wavelength dependence of terahertz pulse generation in thin-film spintronic THz emitters composed of a ferromagnetic CoFeB layer between adjacent nonmagnetic W and Pt layers. We find that the efficiency of THz generation is essentially flat for excitation by 150 fs pulses with center wavelengths ranging from 900 to 1500 nm, demonstrating that the spin current does not depend strongly on the pump photon energy. We show that the inclusion of dielectric overlayers of TiO2 and SiO2, designed for a particular excitation wavelength, can enhance the terahertz emission by a factor of up to two in field.

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)SpintronicsField (physics)business.industryTerahertz radiationPhysics::Optics02 engineering and technologyDielectricPhoton energy021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceWavelengthFerromagnetism0103 physical sciencesOptoelectronics0210 nano-technologybusinessExcitationApplied Physics Letters
researchProduct

Nanoparticle dispersion in liquid metals by electromagnetically induced acoustic cavitation

2016

Abstract Aim of this study is to investigate experimentally the effect of magnetically induced cavitation applied for the purpose of nanoparticle dispersion in liquid metals. The oscillating magnetic force due to the azimuthal induction currents and the axial magnetic field excites power ultrasound in the sample. If the fields are sufficiently high then it is possible to achieve the acoustic cavitation threshold in liquid metals. Cavitation bubble collapses are known to create microscale jets with a potential to break nanoparticle agglomerates and disperse them. The samples are solidified under the contactless ultrasonic treatment and later analyzed by electron microscopy and energy-dispers…

010302 applied physicsMaterials sciencePolymers and Plasticsbusiness.industryPhysics::Medical PhysicsUltrasoundMetallurgyMetals and AlloysNanoparticle02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldPhysics::Fluid DynamicsAgglomerateCavitation0103 physical sciencesCeramics and CompositesUltrasonic sensorMagnesium alloyComposite material0210 nano-technologybusinessMicroscale chemistryActa Materialia
researchProduct

Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

2018

Abstract Silicon single crystal growth by the Czochralski (CZ) technique is studied numerically using non-stationary mathematical models which allow to predict the evolution of the CZ system in time, including Dash neck, cone and cylindrical growth stages. The focus is on the point defect dynamics, also considering the effect of the thermal stresses. During the cylindrical stage, the crystal pull rate is temporarily reduced as in experiments by Abe et al. The crystal radius and heater power change is explicitly considered in the calculations for crystal diameters of 50, 100 and 200 mm and the agreement with experiments is discussed.

010302 applied physicsMaterials scienceSiliconField (physics)Mathematical modelchemistry.chemical_element02 engineering and technologyRadiusMechanics021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesInorganic ChemistryCrystalchemistry0103 physical sciencesThermalMaterials ChemistryPoint (geometry)0210 nano-technologyFocus (optics)Journal of Crystal Growth
researchProduct