Search results for "Films"
showing 10 items of 2839 documents
Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of a Bacteriophytochrome
2019
The tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome from Deinococcus radiodurans (DrBphP) is usually assumed to be fully protonated, but this assumption has not been systematically validated by experiments or extensive computations. Here, we use force field molecular dynamics simulations and quantum mechanics/molecular mechanics calculations with density functional theory and XMCQDPT2 methods to investigate the effect of the five most probable protonation forms of BV on structural stability, binding pocket interactions, and absorption spectra in the two photochromic states of DrBphP. While agreement with X-ray structural data and measured UV/vis spectra suggest that …
Ag11(SG)7 : A New Cluster Identified by Mass Spectrometry and Optical Spectroscopy
2014
We report a one-step and high yield synthesis of a red-luminescent silver cluster with the molecular formula, Ag11(SG)7 (SG: glutathionate) via reduction of silver ions by sodium borohydride in the presence of the tripeptide, glutathione (GSH). The as-prepared cluster shows prominent absorption features at 485 and 625 nm in its UV-vis absorption spectrum. Aging of the as-prepared cluster solution led to the disappearance of the 625 nm peak, followed by broadening of the 485 nm peak to give three maxima at ?487, 437, and 393 nm in its absorption spectrum. These peaks remain unchanged even after polyacrylamide gel electrophoresis (PAGE), where a single band was observed confirming high purity…
Fabrication and characterization of vacuum deposited fluorescein thin films
2011
Simple vacuum evaporation technique for deposition of dyes on various solid surfaces has been developed. The method is compatible with conventional solvent-free nanofabrication processing enabling fabrication of nanoscale optoelectronic devices. Thin films of fluorescein were deposited on glass, fluorine-tin-oxide (FTO) coated glass with and without atomically layer deposited (ALD) nanocrystalline 20 nm thick anatase TiO2 coating. Surface topology, absorption and emission spectra of the films depends on their thickness and the material of supporting substrate. On a smooth glass surface the dye initially formes islands before merging into a uniform layer after 5 to 10 monolayers. On FTO cove…
Experimental and robust modeling approach for lead(II) uptake by alginate gel beads: influence of the ionic strength and medium composition.
2014
Abstract Systematic kinetic and equilibrium studies on the lead ions removal ability by Ca-alginate gel beads have been performed by varying several internal parameters, namely, number of gel beads, nature and composition of the ionic medium and pH, which allowed us to model a wastewater in order to closely reproduce the composition of a real sample. Moreover, the effects brought about the different ionic species present in the reacting medium have been evaluated. Differential Pulse Anodic Stripping Voltammetry (DP-ASV), has been systematically used to perform kinetic and equilibrium measurements over continuous time in a wide range of concentration. Kinetic and equilibrium data have been q…
Thermal stability of transition alumina nanocrystals with different microstructures
2018
Abstract The preparation of well-crystallized boehmite nanoparticles with different morphologies, encompassing from aciculae or rods of 320, 150 and 70 nm of length to platelets of 50 nm in diameter, allowed a comparative study of their respective thermal evolutions as alumina precursors. Static thermal treatments of boehmite nanocrystals at 600, 1000 and 1200 °C and a dynamic, in situ synchrotron study between 100 and 1000 °C revealed that original boehmite microstructures, i.e. size and shape of the nanoparticles, were kept not only in γ-Al 2 O 3 but also in transitional aluminas up to 1000 °C. Specifically, at that temperature, acicular samples presented θ-Al 2 O 3 structure, while in pl…
Femtosecond up-conversion technique for probing the charge transfer in a P3HT : PCBM blend via photoluminescence quenching
2009
We report on an experimental study of the charge transfer dynamics in a P3HT : PCBM blend by means of a femtosecond fluorescence up-conversion technique. Using two-photon excitation we probe the exciton dynamics in P3HT and a P3HT : PCBM blend with a weight ratio of 1 : 1 at excitation densities of up to 6 × 1018 cm−3. In both samples we find strongly nonexponential decay traces compatible with (i) diffusion-limited exciton–exciton annihilation and (ii) diffusion-limited donor–acceptor charge transfer in the polymer blend. Additionally, our results indicate that in the P3HT : PCBM blend about 50% of the photogenerated excitons undergo a prompt charge transfer process on a time scale of abou…
Calculations of high-power production target and beamdump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility
2005
A superconducting fragment separator (Super-FRS) is being designed for the production and separation of radioactive isotopes at the future FAIR (Facility for Antiprotons and Ion Research) facility at Darmstadt. This paper discusses various aspects and requirements for the high-power production target that will be used in the Super-FRS experiments. The production target must survive over an extended period of time as it will be used during the course of many experiments. The specific power deposited by the high intensity beam that will be generated at the future FAIR facility will be high enough to destroy the target in most of the cases as a result of a single shot from the new heavy ion sy…
Electronic properties of Co2MnSi thin films studied by hard x-ray photoelectron spectroscopy
2009
This work reports on the electronic properties of thin films of the Heusler compound Co2MnSi studied by means of hard x-ray photoelectron spectroscopy (HAXPES). The results of photoelectron spectroscopy from multilayered thin films excited by photons of 2?8?keV are presented. The measurements were performed on (substrate/buffer layer/Co2MnSi(z)/capping layer) multilayers with a thickness z ranging from 0 to 50?nm. It is shown that high energy spectroscopy is a valuable tool for non-destructive depth profiling. The experimentally determined values of the inelastic electron mean free path in Co2MnSi increase from about 19.5 to 67?? on increasing the kinetic energy from about 1.9 to 6.8?keV. T…
Hard x-ray photoelectron spectroscopy of buried Heusler compounds
2009
This work reports on high energy photoelectron spectroscopy from the valence band of buried Heusler thin films (Co2MnSi and Co2FeAl0.5Si0.5) excited by photons of about 6?keV energy. The measurements were performed on thin films covered by MgO and SiOx with different thicknesses from 1 to 20?nm of the insulating layer and additional AlOx or Ru protective layers. It is shown that the insulating layer does not affect the high energy spectra of the Heusler compound close to the Fermi energy. The high resolution measurements of the valence band close to the Fermi energy indicate a very large electron mean free path of the electrons through the insulating layer. The spectra of the buried thin fi…
Magnetic properties of Co2Mn1−xFexSi Heusler alloys
2006
Co2Mn1−xFexSi Heusler alloys with Fe concentration x = 0–0.4 as prepared by arc melting show a L21 long range order for all Fe concentrations. Magnetic properties of Co2Mn1−xFexSi Heusler alloys were investigated by magnetometry and circular magnetic dichroism. The magnetization of the Fe doped Heusler alloys is in agreement with the Slater–Pauling values expected for half-metallic ferromagnets. Element specific magnetic moments as determined by x-ray absorption using the total electron yield method are in disagreement with theoretical predictions for x = 0 but approach the predicted values as the Fe concentration increases. Surprisingly small Fe concentration increases the magnetic moments…