Search results for "Fixed Point"
showing 10 items of 347 documents
Fixed Points for Multivalued Convex Contractions on Nadler Sense Types in a Geodesic Metric Space
2019
In 1969, based on the concept of the Hausdorff metric, Nadler Jr. introduced the notion of multivalued contractions. He demonstrated that, in a complete metric space, a multivalued contraction possesses a fixed point. Later on, Nadler&rsquo
Numerical Methods for BVP’s Appearing in Nondestructive Ultrasonic Testing
2018
Abstract In this article we studies BVP’s that can not be solved as P.V.I or BVP with Matlab solvers ODExx or BVPxx since the solutions do not have limit in 0. We propose a numerical algorithm based on Cubic-spline written in Maple 16 [4].
Fixed point spaces, primitive character degrees and conjugacy class sizes
2006
Let G be a finite group that acts on a nonzero finite dimensional vector space V over an arbitrary field. Assume that V is completely reducible as a G-module, and that G fixes no nonzero vector of V. We show that some element g ∈ G has a small fixed-point space in V. Specifically, we prove that we can choose g so that dim C V (g) < (1/p)dim V, where p is the smallest prime divisor of |G|.
An Integral Version of Ćirić’s Fixed Point Theorem
2011
We establish a new fixed point theorem for mappings satisfying a general contractive condition of integral type. The presented theorem generalizes the well known Ciric's fixed point theorem [Lj. B. Ciric, Generalized contractions and fixed point theorems, Publ. Inst. Math. 12 (26) (1971) 19-26]. Some examples and applications are given.
Almost Planar Homoclinic Loops in R3
1996
AbstractIn this paper we study homoclinic loops of vector fields in 3-dimensional space when the two principal eigenvalues are real of opposite sign, which we call almost planar. We are interested to have a theory for higher codimension bifurcations. Almost planar homoclinic loop bifurcations generically occur in two versions “non-twisted” and “twisted” loops. We consider high codimension homoclinic loop bifurcations under generic conditions. The generic condition forces the existence of a 2-dimensional topological invariant ring (non necessarily unique), which is a topological cylinder in the “non-twisted” case and a topological Möbius band in the “twisted” case. If the third eigenvalue is…
Fixed point theorems for multivalued maps via new auxiliary function
2016
We introduce a contractive condition involving new auxiliary function and prove a fixed point theorem for closed multivalued maps on complete metric spaces. An example and an application to integral equation are given in support of our findings.
Existence of fixed points and measures of weak noncompactness
2009
Abstract The purpose of this paper is to study the existence of fixed points by using measures of weak noncompactness. Later on, we provide an existence principle for solutions for a nonlinear integral equation.
Fixed point theorems on ordered metric spaces and applications to nonlinear elastic beam equations
2012
In this paper, we establish certain fixed point theorems in metric spaces with a partial ordering. Presented theorems extend and generalize several existing results in the literature. As application, we use the fixed point theorems obtained in this paper to study existence and uniqueness of solutions for fourth-order two-point boundary value problems for elastic beam equations.
Coincidence problems for generalized contractions
2014
In this paper, we establish some new existence, uniqueness and Ulam-Hyers stability theorems for coincidence problems for two single-valued mappings. The main results of this paper extend the results presented in O. Mle?ni?e: Existence and Ulam-Hyers stability results for coincidence problems, J. Non-linear Sci. Appl., 6(2013), 108-116. In the last section two examples of application of these results are also given.
Normal forms of hyperbolic logarithmic transseries
2021
We find the normal forms of hyperbolic logarithmic transseries with respect to parabolic logarithmic normalizing changes of variables. We provide a necessary and sufficient condition on such transseries for the normal form to be linear. The normalizing transformations are obtained via fixed point theorems, and are given algorithmically, as limits of Picard sequences in appropriate topologies.