Search results for "Fixed Point"
showing 10 items of 347 documents
Common fixed points for self-mappings on partial metric spaces
2012
Abstract In this paper, we prove some results of a common fixed point for two self-mappings on partial metric spaces. Our results generalize some interesting results of Ilić et al. (Appl. Math. Lett. 24:1326-1330, 2011). We conclude with a result of the existence of a fixed point for set-valued mappings in the context of 0-complete partial metric spaces. MSC:54H25, 47H10.
Fixed point theory in partial metric spaces via φ-fixed point’s concept in metric spaces
2014
Abstract Let X be a non-empty set. We say that an element x ∈ X is a φ-fixed point of T, where φ : X → [ 0 , ∞ ) and T : X → X , if x is a fixed point of T and φ ( x ) = 0 . In this paper, we establish some existence results of φ-fixed points for various classes of operators in the case, where X is endowed with a metric d. The obtained results are used to deduce some fixed point theorems in the case where X is endowed with a partial metric p. MSC:54H25, 47H10.
On a pair of fuzzy $\varphi$-contractive mappings
2010
We establish common fixed point theorems for fuzzy mappings under a $\varphi$-contraction condition on a metric space with the d_$\infty$-metric (induced by the Hausdorff metric) on the family of fuzzy sets. The study of fixed points of fuzzy set-valued mappings related to the d_$\infty$-metric is useful in geometric problems arising in high energy physics. Our results generalize some recent results.
A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces
2013
Abstract In this paper, we obtain a Suzuki type fixed point theorem for a generalized multivalued mapping on a partial Hausdorff metric space. As a consequence of the presented results, we discuss the existence and uniqueness of the bounded solution of a functional equation arising in dynamic programming.
JH-Operators and Occasionally Weakly g-Biased Pairs in Fuzzy Symmetric Spaces
2013
We introduce the notions of $\mathcal{JH}$-operators and occasionally weakly $g$-biased mappings in fuzzy symmetric spaces to prove common fixed point theorems for self-mappings satisfying a generalized mixed contractive condition. We also prove analogous results for two pairs of $\mathcal{JH}$-operators by assuming symmetry only on the set of points of coincidence. These results unify, extend and complement many results existing in the recent literature. We give also an application of our results to product spaces.
Unified Metrical Common Fixed Point Theorems in 2-Metric Spaces via an Implicit Relation
2013
We prove some common fixed point theorems for two pairs of weakly compatible mappings in 2-metric spaces via an implicit relation. As an application to our main result, we derive Bryant's type generalized fixed point theorem for four finite families of self-mappings which can be utilized to derive common fixed point theorems involving any finite number of mappings. Our results improve and extend a host of previously known results. Moreover, we study the existence of solutions of a nonlinear integral equation.
A fixed point theorem inG-metric spaces viaα-series
2014
In the context of G -metric spaces we prove a common fixed point theorem for a sequence of self mappings using a new concept of α-series. Keywords: α-series, common fixed point, G -metric space Quaestiones Mathematicae 37(2014), 429-434
Fixed point theory for a class of generalized nonexpansive mappings
2011
AbstractIn this paper we introduce two new classes of generalized nonexpansive mapping and we study both the existence of fixed points and their asymptotic behavior.
A Mönch type fixed point theorem under the interior condition
2009
Abstract In this paper we show that the well-known Monch fixed point theorem for non-self mappings remains valid if we replace the Leray–Schauder boundary condition by the interior condition. As a consequence, we obtain a partial generalization of Petryshyn's result for nonexpansive mappings.
Monotone Relations, Fixed Points and Recursive Definitions
2008
The paper is concerned with reflexive points of relations. The significance of reflexive points in the context of indeterminate recursion principles is shown.