Search results for "Fluid dynamic"
showing 10 items of 1034 documents
Water Fluxes in Polymeric Membranes for Desalination via Membrane Distillation
2010
Membrane distillation is an emerging technique for seawater desalination. Hydrophobic polymeric membranes are used to separate the solute‐free water vapour from the hot solution. Vapour fluxes of commercial polymeric membranes were measured in various conditions, i.e. natural and forced convection and vacuum. Vapour fluxes were also predicted with models and compared with experimentals. Higher fluxes were recorded in vacuum conditions.
Pressure-Induced Deformation of Pillar-Type Profiled Membranes and Its Effects on Flow and Mass Transfer
2019
In electro-membrane processes, a pressure difference may arise between solutions flowing in alternate channels. This transmembrane pressure (TMP) causes a deformation of the membranes and of the fluid compartments. This, in turn, affects pressure losses and mass transfer rates with respect to undeformed conditions and may result in uneven flow rate and mass flux distributions. These phenomena were analyzed here for round pillar-type profiled membranes by integrated mechanical and fluid dynamics simulations. The analysis involved three steps: (1) A conservatively large value of TMP was imposed, and mechanical simulations were performed to identify the geometry with the minimum pillar density…
Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field
2014
International audience; Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recentl…
Shape optimization for Stokes problem with threshold slip boundary conditions
2017
This paper deals with shape optimization of systems governed by the Stokes flow with threshold slip boundary conditions. The stability of solutions to the state problem with respect to a class of domains is studied. For computational purposes the slip term and impermeability condition are handled by a regularization. To get a finite dimensional optimization problem, the optimized part of the boundary is described by B´ezier polynomials. Numerical examples illustrate the computational efficiency. peerReviewed
Zastosowanie CFD w ocenie drożności górnych dróg oddechowych
2016
Obliczeniowa dynamika płynów (CFD) to szybko rozwijająca się dziedzina nauki, mająca szereg zastosowań praktyc - znych. Od lat używana jest w aerodynamice, inżynierii, hydraulice, meteorologii, budownictwie oraz wielu innych dziedz - inach. Pierwsze publikacje dotyczące użycia CFD w medycynie dotyczyły przede wszystkim pulmonologii i kardiologii, czyli dziedzin, w których dynamiczne właściwości gazu i płynu odgrywają ważną rolę w prawidłowym funkcjonowa - niu organizmu. W laryngologii CFD umożliwia pomiar oraz wizualizację dynamicznie zmieniających się parametrów przepływu powietrza w górnych drogach oddechowych.
EOF-Library: Open-source Elmer FEM and OpenFOAM coupler for electromagnetics and fluid dynamics
2019
EOF-Library is a software that couples Elmer and OpenFOAM simulation packages. It enables efficient internal field interpolation and communication between the finite element and the finite volume frameworks. The coupling of the two packages is based on the Message Passing Interface, which results in low latency, high data bandwidth and parallel scalability. Potential applications are magnetohydrodynamics, convective cooling of electrical devices, industrial plasma physics and microwave heating. In this work we introduce the software and perform interpolation accuracy and parallel scaling tests by sending a known scalar distribution between the two codes. Keywords: Elmer, FEM, OpenFOAM, FVM,…
Numerical Investigation of a Wood-Chip Downdraft Gasifier
2019
Biomass gasification is regarded as one of the most promising technology in the renewable energy field. The outcome of such operation, i.e. the synfuel, can be exploited in several ways, for example powering engines and turbines, and is considered more flexible than the biomass itself. For this reason, a careful analysis of the gasification performance is of paramount importance for the optimization of the process. One of the techniques that can be used for such a purpose, is the numerical analysis. CFD is indeed a tool that can be of great help in the design and study of the operation of the gasifier, allowing for an accurate prediction of the operating parameters. In this work, a downdraf…
Performance Improvement of a Drag Hydrokinetic Turbine
2021
Hydropower is at present in many locations, among all the other possible renewable energy sources, the best one for net cost per unit power. In contrast to traditional installation, based on water storage in artificial basins, free flow river turbines also provide a very low environmental impact due to their negligible effect on solid transport. Among them, kinetic turbines with vertical axis are very inexpensive and have almost zero impact on fish and local fauna. In application to tidal waves and sea waves, where vertically averaged velocities have alternate direction, a Savonius rotor also has the advantage of being productive during the whole time cycle. In this work, the effect of an u…
Comparative Analyses between the Zero-Inertia and Fully Dynamic Models of the Shallow Water Equations for Unsteady Overland Flow Propagation
2018
The shallow water equations are a mathematical tool widely applied for the simulation of flow routing in rivers and floodplains, as well as for flood inundation mapping. The interest of many researchers has been focused on the study of simplified forms of the original set of equations. One of the most commonly applied simplifications consists of neglecting the inertial terms. The effects of such a choice on the outputs of the simulations of flooding events are controversial and are an important topic of debate. In the present paper, two numerical models recently proposed for the solution of the complete and zero-inertia forms of the shallow water equations, are applied to several unsteady f…
Magnetic Field Control of Combustion Dynamics
2016
Abstract Experimental studies and mathematical modelling of the effects of magnetic field on combustion dynamics at thermo-chemical conversion of biomass are carried out with the aim of providing control of the processes developing in the reaction zone of swirling flame. The joint research of the magnetic field effect on the combustion dynamics includes the estimation of this effect on the formation of the swirling flame dynamics, flame temperature and composition, providing analysis of the magnetic field effects on the flame characteristics. The results of experiments have shown that the magnetic field exerts the influence on the flow velocity components by enhancing a swirl motion in the …