Search results for "Fluid dynamic"

showing 10 items of 1034 documents

Hydrodynamic equations of anisotropic, polarized and inhomogeneous superfluid vortex tangles

2008

We include the effects of anisotropy and polarization in the hydrodynamics of inhomogeneous vortex tangles, thus generalizing the well known Hall-Vinen-Bekarevich-Khalatnikov equations, which do not take them in consideration. These effects contribute to the mutual friction force ${\bf F}_{ns}$ between normal and superfluid components and to the vortex tension force $\rho_s{\bf T}$. These equations are complemented by an evolution equation for the vortex line density $L$, which takes into account these contributions. These equations are expected to be more suitable than the usual ones for rotating counterflows, or turbulence behind a cylinder, or turbulence produced by a grid of parallel th…

PhysicsTurbulenceCondensed Matter::OtherFOS: Physical sciencesStatistical and Nonlinear PhysicsTourbillonCondensed Matter PhysicsPolarization (waves)VortexCylinder (engine)law.inventionSuperfluidityPhysics::Fluid DynamicsCondensed Matter - Other Condensed MatterClassical mechanicslawEvolution equationAnisotropySettore MAT/07 - Fisica MatematicaSuperfluid turbulence Liquid helium II Hydrodynamic equationsOther Condensed Matter (cond-mat.other)
researchProduct

Suspension phenomena in solid-liquid agitated systems

2011

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciSettore ING-IND/25 - Impianti Chimicisolid liquid suspension stirred tanks mixing computational fluid dynamics
researchProduct

Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS)

2017

ABSTRACTIn this paper, laminar nanofluid flow in 3D copper microchannel heat sink (MCHS) with rectangular cross section, and a constant heat flux, has been treated numerically using the computational fluid dynamics software (FLUENT). Results for the temperature and velocity distributions in the investigated MCHS are presented. In addition, experimental and numerical values are compared in terms of friction factors, convective heat transfer coefficients, wall temperature and pressure drops, for various particle volume concentrations and Reynolds numbers. The numerical results show that enhancing the heat flux has a very weak effect on the heat transfer coefficient for pure water, but an appr…

Pressure dropConvective heat transferChemistry020209 energyHeat transfer enhancementReynolds numberThermodynamicsLaminar flow02 engineering and technologyHeat transfer coefficientMechanicsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsPhysics::Fluid Dynamicssymbols.namesakeNanofluidHeat flux0202 electrical engineering electronic engineering information engineeringMaterials ChemistrysymbolsPhysical and Theoretical ChemistryPhysics and Chemistry of Liquids
researchProduct

Spreading dynamics of three-dimensional droplets by the lattice-Boltzmann method

2000

Abstract We have simulated spreading of small droplets on smooth and rough solid surfaces using the three-dimensional lattice-Boltzmann method. We present results for the influence of the initial distance and shape of the drop from the surface on scaling of droplet radius R as a function of time. For relatively flat initial drop shapes our observations are consistent with Tanner's law R ∼ t q , where q =1/10. For increasingly spherical initial shapes, the exponent q increases rapidly being above one half for spherical droplets initially just above the surface. As expected, surface roughness slows down spreading, decreases the final drop radius, and results in irregular droplet shape due to …

One halfGeneral Computer ScienceChemistryDrop (liquid)Lattice Boltzmann methodsGeneral Physics and AstronomyWettingGeneral ChemistryMechanicsSurface finishBoltzmann equationPhysics::Fluid DynamicsDropletComputational MathematicsClassical mechanicsMechanics of MaterialsSurface roughnessGeneral Materials ScienceWettingScalingLattice-Boltzmann
researchProduct

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field

2014

International audience; Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recentl…

jetsPhysicsJet (fluid)MultidisciplinaryShock (fluid dynamics)Young stellar objectAstrophysics::High Energy Astrophysical PhenomenaFlow (psychology)PlasmaConical surfaceAstrophysics01 natural sciencesSIMULATIONS010305 fluids & plasmasMagnetic fieldCOLLIMATION[PHYS.COND.CM-S]Physics [physics]/Condensed Matter [cond-mat]/Superconductivity [cond-mat.supr-con]DISCOVERY0103 physical sciencesDG-TAURI010303 astronomy & astrophysicsACCRETION DISCSAstrophysics::Galaxy AstrophysicsDRIVEN JETS
researchProduct

Scaling Behavior in Non-Hookean Compression of Thin-Walled Structures

2010

The mechanics and stability of thin-walled structures is a challenging and important branch in structural mechanics. Under vertical compression the deformation of a thin-walled box differs from that of, e.g., a cylindrical shell. It is demonstrated here that compression of a box can be described by a set of generic scaling laws representing three successive regimes: a linear, wrinkled, and collapsed regime. The linear Hookean regime represents the normal behavior before any instability sets in, while the following wrinkled regime is shown to be analogous to compression of thin-film blisters. The compression force reaches its maximum at the onset of the final collapsed regime that has all th…

Condensed Matter::Soft Condensed MatterPhysics::Fluid DynamicsPhysicsClassical mechanicsDeformation (mechanics)Structural mechanicsShell (structure)General Physics and AstronomyThin walledCompression (physics)ScalingStability (probability)InstabilityPhysical Review Letters
researchProduct

Computational modeling and experimental characterization of fluid dynamics in micro-CT scanned scaffolds within a multiple-sample airlift perfusion b…

2023

The perfusion of flow during cell culture induces cell proliferation and enhances cellular activity. Perfusion bioreactors offer a controlled dynamic environment for reliable in vitro applications in the tissue engineering field. In this work, to evaluate the effects of the operating parameters of a custom-made bioreactor, numerical simulations were performed to solve the fluid velocity profile inside the bioreactor containing multi-grid support that allows allocating of multiple seeded scaffolds at the same time. The perfusion system exhibited a uniform distribution of liquid velocities within the regions, suitable for cell growth on seeded scaffolds. The effects of the porous microstructu…

Micro-computed tomographySettore ING-IND/24 - Principi Di Ingegneria ChimicaEnvironmental EngineeringTissue EngineeringBiomedical EngineeringSettore ING-IND/34 - Bioingegneria IndustrialeDynamic cell cultureBioengineeringAirlift perfusion bioreactorComputational Fluid Dynamics simulationBiotechnologyBiochemical Engineering Journal
researchProduct

Complex miscibility behaviour for polymer blends in flow

1995

Abstract Experimental observations of the effect of shear flow on the miscibility of binary polymer blends are compared to calculations based on a generalized Gibbs energy of mixing Gγ˙. This mixing free energy characterizes the steady state established at shear rateγ˙, as the sum of G z , the equilibrium Gibbs energy and E s , the energy the system stores while flowing.

Cloud pointMaterials sciencePolymers and PlasticsOrganic ChemistryBinary numberThermodynamicsMiscibilityGibbs free energyCondensed Matter::Soft Condensed MatterPhysics::Fluid Dynamicssymbols.namesakeShear (geology)Materials ChemistrysymbolsPolymer blendComposite materialShear flowPolymer
researchProduct

Generalized transport coefficients in a gas with large shear rate

1987

We get a solution of the Bhatnagar-Gross-Krook (BGK) model kinetic equation by means of a perturbative expansion of a temperature gradient to study the transport properties in a gas with large shear rate. The irreversible fluxes are evaluated exactly to first order in the expansion for Maxwell molecules. The transport coefficients obtained are highly nonlinear functions of the shear rate. This dependence on shear rate is analysed and compared with previous results for several transport coefficients. Finally, we have found a solution for a simple model of constant collision frequency for which a large shear rate coexists with an arbitrary temperature gradient.

ChemistryBiophysicsThermodynamicsMechanicsCondensed Matter PhysicsFirst orderPhysics::Fluid DynamicsShear rateSimple shearNonlinear systemTemperature gradientCollision frequencyKinetic equationsPhysical and Theoretical ChemistryConstant (mathematics)Molecular BiologyMolecular Physics
researchProduct

IMEX Finite Volume Methods for Cloud Simulation

2017

We present new implicit-explicit (IMEX) finite volume schemes for numerical simulation of cloud dynamics. We use weakly compressible equations to describe fluid dynamics and a system of advection-diffusion-reaction equations to model cloud dynamics. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravitational waves as well as diffusive effects and a non-stiff nonlinear part that models nonlinear advection effects. We use a stiffly accurate second order IMEX scheme for time discretization to approximate the stiff linear operator implicitly and the non-stiff nonlinear operator explicitly. Fast microscale clou…

PhysicsNonlinear systemsymbols.namesakeFinite volume methodComputer simulationDiscretizationCompressibilityFluid dynamicssymbolsApplied mathematicsNavier–Stokes equationsEuler equations
researchProduct