Search results for "Fluorescence microscopy"
showing 10 items of 61 documents
Casparian Strips in the Leaf Intrastelar Canals of Isoetes duriei Bory, a Mediterranean Terrestrial Species
2000
Abstract Anatomical observations, using light and fluorescence microscopy, were made on leaves of Isoetes duriei to verify the presence of casparian bands around the intrastelar canals. This peculiar anatomical feature, previously reported for some Isoetes species, is confirmed. The possible role of this endodermis-like structure, in the transport of water due to root pressure or in the accumulation of certain metabolites, is discussed in relation to the ecological and anatomical features of the species.
Two-photon light-sheet microscopy for high-speed whole-brain functional imaging of zebrafish neuronal physiology and pathology
2020
We present the development of a custom-made two-photon light-sheet microscope optimized for high-speed (5 Hz) volumetric imaging of zebrafish larval brain for the analysis of neuronal physiological and pathological activity. High-speed volumetric two-photon light-sheet microscopy is challenging to achieve, due to constrains on the signal-to-noise ratio. To maximize this parameter, we optimized our setup for high peak power of excitation light, while finely controlling its polarization, and we implemented remote scanning of the focal plane to record without disturbing the sample. Two-photon illumination is advantageous for zebrafish larva studies since infra-red excitation does not induce a …
Formation of irreversibly bound annexin A1 protein domains on POPC/POPS solid supported membranes
2008
AbstractThe specific interaction of annexin A1 with phospholipid bilayers is scrutinized by means of scanning force and fluorescence microscopy, quartz crystal microbalance, ellipsometry, and modeled by dynamic Monte Carlo simulations. It was found that POPC/POPS bilayers exhibit phase separation in POPC- and POPS-enriched domains as a function of Ca2+ concentration. Annexin A1 interacts with POPC/POPS bilayers by forming irreversibly bound protein domains with monolayer thickness on POPS-enriched nanodomains, while the attachment of proteins to the POPC-enriched regions is fully reversible. A thorough kinetic analysis of the process reveals that both, the binding constant of annexin A1 at …
Distribution of Cytoglobin in the Mouse Brain
2016
Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular pe…
THREE-DIMENSIONAL INTEGRAL MICROSCOPY WITH ENHANCED RESOLUTION AND DEPTH OF FIELD
2016
In this contribution we explain two new techniques developed by our group, which permit to increase the two-dimensional spatial resolution of the computed depth images in integral microscopy.
Resolution improvements in integral microscopy with Fourier plane recording
2016
Abstract: Integral microscopes (IMic) have been recently developed in order to capture the spatial and the angular information of 3D microscopic samples with a single exposure. Computational post-processing of this information permits to carry out a 3D reconstruction of the sample. By applying conventional algorithms, both depth and also view reconstructions are possible. However, the main drawback of IMic is that the resolution of the reconstructed images is low and axially heterogeneous. In this paper, we propose a new configuration of the IMic by placing the lens array not at the image plane, but at the pupil (or Fourier) plane of the microscope objective. With this novel system, the spa…
Fast multi-directional DSLM for confocal detection without striping artifacts
2020
In recent years light-sheet fluorescence microscopy (LSFM) has become a cornerstone technology for neuroscience, improving the quality and capabilities of 3D imaging. By selectively illuminating a single plane, it provides intrinsic optical sectioning and fast image recording, while minimizing out of focus fluorescence background, sample photo-damage and photo-bleaching. However, images acquired with LSFM are often affected by light absorption or scattering effects, leading to un-even illumination and striping artifacts. In this work we present an optical solution to this problem, via fast multi-directional illumination of the sample, based on an acousto-optical deflector (AOD). We demonstr…
Light Sheet Fluorescence Microscopy (LSFM) for Two-Photon Excitation Imaging of Thick Samples.
2015
Over the last decades, fluorescence microscopy techniques have been developed in order to provide a deeper, faster and higher resolution imaging of three-dimensional biological samples. Within this framework, Light Sheet Fluorescence Microscopy (LSFM) became an increasingly useful and popular imaging technique able to answer several biological questions in the field of developmental biology [1]. Thanks to the spatial confinement of the excitation process within a thin sheet in the focal plane, it provides an intrinsic optical sectioning and a reduced phototoxicity. On the other side, Two-Photon Excitation (2PE), thanks to the use of IR wavelengths, has become an invaluable tool to improve i…
FRESHWATER CYANOBACTERIA, IDENTIFIED BY MICROSCOPIC AND MOLECULAR INVESTIGATIONS ON A COLONIZED FOUNTAIN SURFACE: A CASE STUDY IN PALERMO (SICILY, IT…
2021
Cyanobacteria or blue algae are ubiquitously present in both fresh and brackish water environments. They also grow in conditions of high humidity, colonizing stones or monuments and fountain surfaces, and creating thick biofilms able to induce biodeterioration in the constituent materials of artefacts. As well as several photoautotrophic organisms, cyanobacteria belong to the microorganisms identified as primary colonizers, playing an important role in stone artwork deterioration. In this study, an analysis was made of the biofilm collected from the stone fountain of the Two Dragons in Palermo (Italy), revealing the presence of cyanobacterial colonies by optical microscopy, due to their pec…
Natural autofluorescence in archeological bone
2017
The human bone present a natural autofluorescence which is tipically induced by natural antibiotiscs absorbed by collagen and in part is due to phenomena not weel know and referred to an enigmatic endogenous fluophore. Is iintristing for us to see the autofluorescence in the various age of the observed samples.