Search results for "Freedom"
showing 10 items of 458 documents
Color-singlet states in a hadronic quark-cluster basis
1987
We prove that any physical (color-singlet) state can be expanded in terms of a basis constructed by direct product from baryonic and/or mesonic states. The proof is based on a group-theoretical representation method due to Hund. The application of the procedure to the color degrees of freedom leads to known results, which we generalize to more complex situations. The joint application of the method to the color and flavor degrees of freedom results in our initial statement. In this way one is able to give physical meaning to a mathematical procedure. The physics behind our calculation is intimately connected with the concepts of elementarity of constituents and the spinstatistics theorem. T…
Space-, time- and spin-resolved photoemission
2015
Journal of electron spectroscopy and related phenomena 200, 94 - 118 (2015). doi:10.1016/j.elspec.2015.05.016
Microscopic Dynamics of Hard Ellipsoids in their Liquid and Glassy Phase
2001
To investigate the influence of orientational degrees of freedom onto the dynamics of molecular systems in its supercooled and glassy regime we have solved numerically the mode-coupling equations for hard ellipsoids of revolution. For a wide range of volume fractions $\phi$ and aspect ratios $x_{0}$ we find an orientational peak in the center of mass spectra $\chi_{000}^{''}(q,\omega)$ and $\phi_{000}^{''} (q,\omega)$ about one decade below a high frequency peak. This orientational peak is the counterpart of a peak appearing in the quadrupolar spectra $\chi_{22m}^{''}(q,\omega)$ and $\phi_{22m}^{''}(q,\omega)$. The latter peak is almost insensitive on $\phi$ for $x_{0}$ close to one, i.e. f…
A Tutorial Approach to the Renormalization Group and the Smooth Feshbach Map
2006
2.1 Relative Bounds on the Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The Feshbach Map and Pull-Through Formula . . . . . . . . . . . . . . . . . 4 2.3 Elimination of High-Energy Degrees of Freedom . . . . . . . . . . . . . . . . 5 2.4 Normal form of Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 Banach Space of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 The Renormalization Map Rρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Hybrid quantum repeater for qudits
2017
We present a "hybrid quantum repeater" protocol for the long-distance distribution of atomic entangled states beyond qubits. In our scheme, imperfect noisy entangled pairs of two qudits, i.e., two discrete-variable $d$-level systems, each of, in principle, arbitrary dimension $d$, are initially shared between the intermediate stations of the channel. This is achieved via local, sufficiently strong light-matter interactions, involving optical coherent states and their transmission after these interactions, and optical measurements on the transmitted field modes, especially (but not restricted to) efficient continuous-variable homodyne detections ("hybrid" here refers to the simultaneous expl…
Neutron scattering and molecular correlations in a supercooled liquid
1999
We show that the intermediate scattering function $S_n(q,t)$ for neutron scattering (ns) can be expanded naturely with respect to a set of molecular correlation functions that give a complete description of the translational and orientational two-point correlations in the liquid. The general properties of this expansion are discussed with special focus on the $q$-dependence and hints for a (partial) determination of the molecular correlation functions from neutron scattering results are given. The resulting representation of the static structure factor $S_n(q)$ is studied in detail for a model system using data from a molecular dynamics simulation of a supercooled liquid of rigid diatomic m…
Test of mode coupling theory for a supercooled liquid of diatomic molecules. II.q-dependent orientational correlators
1997
Using molecular dynamics computer simulations we study the dynamics of a molecular liquid by means of a general class of time-dependent correlators S_{ll'}^m(q,t) which explicitly involve translational (TDOF) and orientational degrees of freedom (ODOF). The system is composed of rigid, linear molecules with Lennard- Jones interactions. The q-dependence of the static correlators S_{ll'}^m(q) strongly depend on l, l' and m. The time dependent correlators are calculated for l=l'. A thorough test of the predictions of mode coupling theory (MCT) is performed for S_{ll}^m(q,t) and its self part S_{ll}^{(s)m}(q,t), for l=1,..,6. We find a clear signature for the existence of a single temperature T…
Systematic derivation of hydrodynamic equations for viscoelastic phase separation
2021
(abridged) We present a detailed derivation of a simple hydrodynamic two-fluid model, which aims at the description of the phase separation of non-entangled polymer solutions, where viscoelastic effects play a role. It is directly based upon the coarse-graining of a well-defined molecular model, such that all degrees of freedom have a clear and unambiguous molecular interpretation. The considerations are based upon a free-energy functional, and the dynamics is split into a conservative and a dissipative part, where the latter satisfies the Onsager relations and the Second Law of thermodynamics. The model is therefore fully consistent with both equilibrium and non-equilibrium thermodynamics.…
Teleportation of atomic states via position measurements
2007
We present a scheme for conditionally teleporting an unknown atomic state in cavity QED, which requires two atoms and one cavity mode. The translational degrees of freedom of the atoms are taken into account using the optical Stern-Gerlach model. We show that successful teleportation with probability 1/2 can be achieved through local measurements of the cavity photon number and atomic positions. Neither direct projection onto highly entangled states nor holonomous interaction-time constraints are required.
Elementary theory and brief history
1991
In the history of the theory of deuteron photodisintegration one may distinguish roughly three periods: (i) the primitive period of the elementary theory using very simple wave functions and forces and considering lowest multipoles (E1, M1) only, (ii) the classical period still in the framework f conventional nuclear physics, but using realstic forces with correspondingly elaborate wave functions and considering also higher multipole transitions, (ii) the post-classic period with explicit treatment of subnuclear degrees of freedom like meson and isobar degrees of freedom and very recently quark-gluon degrees of freedom.