Search results for "G-quadruplexes"
showing 10 items of 67 documents
[Au(9-methylcaffein-8-ylidene) 2 ] + /DNA Tel23 System: Solution, Computational, and Biological Studies
2017
International audience; Physicochemical methods have been used to investigate interactions occurring in solution between the dicarbene gold(I) complex [Au(9‐methylcaffein‐8‐ylidene)2]BF4 (AuNHC) and a human telomeric DNA sequence, namely Tel23. Circular dichroism measurements allow identification of the conformational changes experienced by Tel23 upon interaction with AuNHC, and the respective binding stoichiometries and constants were determined. Computational studies provide a good link between previous crystallographic results of the same system and the present solution data, offering an exhaustive description of the inherent noncovalent metallodrug–DNA interactions. Remarkably, we found…
Aza-macrocyclic triphenylamine ligands for G-quadruplex recognition
2018
A new series of triphenylamine-based ligands with one (TPA1PY), two (TPA2PY) or three pendant aza-macrocycle(s) (TPA3PY) has been synthesised and studied by means of pH-metric titrations, UV/Vis spectroscopy and fluorescence experiments. The affinity of these ligands for G-quadruplex (G4) DNA and the selectivity they show for G4s over duplex DNA were investigated by Forster resonance energy transfer (FRET) melting assays, fluorimetric titrations and circular dichroism spectroscopy. Interestingly, the interactions of the bi- and especially the tri-branched ligands with G4s lead to a very intense redshifted fluorescence emission band that may be associated with intermolecular aggregation betw…
Perturbation of Developmental Regulatory Gene Expression by a G-Quadruplex DNA Inducer in the Sea Urchin Embryo.
2018
The G-quadruplex (G4) is a four-stranded DNA structure identified in vivo in guanine-rich regions located in the promoter of a number of genes. Intriguing evidence suggested that small molecules acting as G4-targeting ligands could potentially regulate multiple cellular processes via either stabilizing or disruptive effects on G4 motifs. Research in this field aims to prove the direct role of G4 ligands and/or structures on a specific biological process in a complex living organism. In this study, we evaluate in vivo the effects of a nickel(II)-salnaphen-like complex, named Nisaln, a potent G4 binder and stabilizer, during embryogenesis of the sea urchin embryo. We describe developmental de…
Visualising G-quadruplex DNA dynamics in live cells by fluorescence lifetime imaging microscopy
2020
Guanine rich regions of oligonucleotides fold into quadruple-stranded structures called G-quadruplexes (G4s). Increasing evidence suggests that these G4 structures form in vivo and play a crucial role in cellular processes. However, their direct observation in live cells remains a challenge. Here we demonstrate that a fluorescent probe (DAOTA-M2) in conjunction with fluorescence lifetime imaging microscopy (FLIM) can identify G4s within nuclei of live and fixed cells. We present a FLIM-based cellular assay to study the interaction of non-fluorescent small molecules with G4s and apply it to a wide range of drug candidates. We also demonstrate that DAOTA-M2 can be used to study G4 stability i…
Prefolded Synthetic G-Quartets Display Enhanced Bioinspired Properties
2016
International audience; A water-soluble template-assembled synthetic G-quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase-type biocatalytic activities and improved quadruplex-interacting properties. Comparison of its DNAzyme-boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme-boosting agent.
Kinetic evidence for interaction of TMPyP4 with two different G-quadruplex conformations of human telomeric DNA
2018
Background: Stabilization of G-quadruplex helices by small ligands has attracted growing attention because they inhibit the activity of the enzyme telomerase, which is overexpressed in> 80% cancer cells. TMPyP4, one of the most studied G-quadruplex ligands, is used as a model to show that the ligands can exhibit different binding features with different conformations of a human telomeric specific sequence. Methods: UV–Vis, FRET melting Assay, Isothermal Titration Calorimetry, Time-resolved Fluorescence lifetime, T-Jump and Molecular Dynamics. Results: TMPyP4 yields two different complexes with two Tel22 telomeric conformations in the presence of Na+ or K+. T-Jump kinetic experiments show th…
Fishing for G-quadruplexes in solution with a perylene diimide derivative labeled with biotins
2018
A new fluorescent, non‐cytotoxic perylene diimide derivative with two biotins at the peri position, PDI2B, has been synthesized. This molecule is able to interact selectively with G‐quadruplexes with scarce or no affinity towards single‐ or double‐stranded DNA. These features have made it possible to design a simple, effective, safe, cheap, and selective method for fishing G‐quadruplex structures in solution by use of PDI2B and streptavidin coated magnetic beads. The new cyclic method reported leads to the recovery of more than 80 % of G‐quadruplex structures from solution, even in the presence of an excess of single‐stranded or duplex DNA as competitors. Moreover, PDI2B is a G4 ligand that…
Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures
2020
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the c…
Determinants for Tight and Selective Binding of a Medicinal Dicarbene Gold(I) Complex to a Telomeric DNA G-Quadruplex: a Joint ESI MS and XRD Investi…
2016
International audience; The dicarbene gold(I) complex [Au(9-methylcaffein-8-ylidene)(2)]BF4 is an exceptional organometallic compound of profound interest as a prospective anticancer agent. This gold(I) complex was previously reported to be highly cytotoxic toward various cancer cell lines invitro and behaves as a selective G-quadruplex stabilizer. Interactions of the gold complex with various telomeric DNA models have been analyzed by a combined ESI MS and X-ray diffraction (XRD) approach. ESI MS measurements confirmed formation of stable adducts between the intact gold(I) complex and Tel 23 DNA sequence. The crystal structure of the adduct formed between [Au(9-methylcaffein-8-ylidene)(2)]…
Dual targeting of higher-order DNA structures by azacryptands induces DNA junction-mediated DNA damage in cancer cells
2021
Abstract DNA is intrinsically dynamic and folds transiently into alternative higher-order structures such as G-quadruplexes (G4s) and three-way DNA junctions (TWJs). G4s and TWJs can be stabilised by small molecules (ligands) that have high chemotherapeutic potential, either as standalone DNA damaging agents or combined in synthetic lethality strategies. While previous approaches have claimed to use ligands that specifically target either G4s or TWJs, we report here on a new approach in which ligands targeting both TWJs and G4s in vitro demonstrate cellular effects distinct from that of G4 ligands, and attributable to TWJ targeting. The DNA binding modes of these new, dual TWJ-/G4-ligands w…