Search results for "G-quartet"
showing 8 items of 8 documents
Template-Assembled Synthetic G-Quartets (TASQ) hydrosolubles : du ligand de quadruplexes d'ADN et d'ARN à la plateforme catalytique
2013
Natural G-quartets, a cyclic and coplanar array of four guanine residues held together via Hoogsteen H-bond network, have recently received much attention due to their involvement in G-quadruplex-DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events (chromosomal stability, regulation of gene expression). Besides this, synthetic G-quartets, which artificially mimic native G-quartets, have also been widely studied for their involvement in nanotechnological applications (i.e. nanowires, artificial ion channels, etc.). In contrast, intramolecular synthetic G-quartets, also named template-assembled synthetic G-quartet (TASQ), have been m…
Prefolded Synthetic G-Quartets Display Enhanced Bioinspired Properties
2016
International audience; A water-soluble template-assembled synthetic G-quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase-type biocatalytic activities and improved quadruplex-interacting properties. Comparison of its DNAzyme-boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme-boosting agent.
How Proximal Nucleobases Regulate the Catalytic Activity of G-Quadruplex/Hemin DNAzymes
2018
International audience; G-quadruplexes (G4s) are versatile catalytic DNAs when combined with hemin. Despite the repertoire of catalytically competent G4/hemin complexes studied so far, little is known about the detailed catalytic mechanism of these biocatalysts. Herein, we have carried out an in-depth analysis of the hemin binding site within the G4/hemin catalysts, providing the porphyrinic cofactor with a controlled nucleotidic environment. We intensively assessed the position-dependent catalytic enhancement in model reactions and found that proximal nucleobases enhance the catalytic ability of the G4/hemin complexes. Our results allow for revisiting the mechanism of the G4/hemin-based ca…
Epigenetic Modulation of Chromatin States and Gene Expression by G-Quadruplex Structures
2020
G-quadruplexes are four-stranded helical nucleic acid structures formed by guanine-rich sequences. A considerable number of studies have revealed that these noncanonical structural motifs are widespread throughout the genome and transcriptome of numerous organisms, including humans. In particular, G-quadruplexes occupy strategic locations in genomic DNA and both coding and noncoding RNA molecules, being involved in many essential cellular and organismal functions. In this review, we first outline the fundamental structural features of G-quadruplexes and then focus on the concept that these DNA and RNA structures convey a distinctive layer of epigenetic information that is critical for the c…
Multitasking Water-Soluble Synthetic G-Quartets: From Preferential RNA-Quadruplex Interaction to Biocatalytic Activity
2013
Natural G-quartets, a cyclic and coplanar array of four guanine res- idues held together through a Watson- Crick/Hoogsteen hydrogen-bond net- work, have received recently much at- tention due to their involvement in G- quadruplex DNA, an alternative higher-order DNA structure strongly suspected to play important roles in key cellular events. Besides this, syn- thetic G-quartets (SQ), which artificial- ly mimic native G-quartets, have also been widely studied for their involve- ment in nanotechnological applications (i.e., nanowires, artificial ion channels, etc.). In contrast, intramolecular syn- thetic G-quartets (iSQ), also named template-assembled synthetic G-quar- tets (TASQ), have been…
The catalytic properties of DNA G-quadruplexes rely on their structural integrity
2021
International audience; The influence of the G-quartet structural integrity on the catalytic activity of the G-quadruplex (G4) was investigated by comparing the G4-DNAzyme performances of a series of G4s with a G-vacancy site and a G-triplex (G-tri). The results presented herein not only confirm that the structural integrity of the 3’-end G-quartet is necessary for G4s to be catalytically competent but also show how to remediate G-vacancy-mediated catalytic activity losses via the addition of guanine surrogates in an approach referred to as G-vacancy complementation strategy that is applicable to parallel G4s only. Furthermore, this study demonstrates that the terminal G-quartet could act a…
The Biotechnological Applications of G-Quartets
2015
International audience