Search results for "GM"

showing 10 items of 28548 documents

Synthesis of FeAl Hetero-Nanostructured Bulk Parts via Spark Plasma Sintering of Milled Powder

2006

AbstractSpark plasma sintering (SPS) has been used in order to introduce nanocrystalline grains within fully dense FeAl consolidated parts. Hetero-nanostructured parts, consisting of nano, ultrafine and micrometric grains, have been successfully processed when milled - Y2O3 reinforced - FeAl powder was used. The large temperature differences that are spontaneously generated during the SPS process as well as the use of milled powder account for the formation of such interesting structures. The grain size distribution - that is suggested to be very potent to improve both strength and ductility - could be significantly modified by a proper selection of sintering temperature and holding time.

010302 applied physicsMaterials scienceMetallurgySinteringSpark plasma sinteringFEAL02 engineering and technology021001 nanoscience & nanotechnologyMicrostructure01 natural sciencesNanocrystalline material[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.MECA.MEMA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][PHYS.MECA.MEMA] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Powder metallurgy0103 physical sciencesNano-[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][CHIM.CRIS]Chemical Sciences/Cristallography[CHIM.CRIS] Chemical Sciences/Cristallography0210 nano-technologyDuctilityComputingMilieux_MISCELLANEOUS
researchProduct

Spin–orbit torque driven multi-level switching in He + irradiated W–CoFeB–MgO Hall bars with perpendicular anisotropy

2020

We have investigated the spin–orbit torque-driven magnetization switching in W/CoFeB/MgO Hall bars with perpendicular magnetic anisotropy. He+ ion irradiation through a mask has been used to reduce locally the effective perpendicular anisotropy at a Hall cross. Anomalous Hall effect measurements combined with Kerr microscopy indicate that the switching process is dominated by domain wall (DW) nucleation in the irradiated region followed by rapid domain propagation at a current density as low as 0.8 MA/cm2 with an assisting in-plane magnetic field. Thanks to the implemented strong pinning of the DW at the transition between the irradiated and the non-irradiated region, an intermediate Hall r…

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)Condensed matter physicsNucleation02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesIonMagnetic fieldMagnetization[SPI]Engineering Sciences [physics]Domain wall (magnetism)Hall effect0103 physical sciencesIrradiation0210 nano-technologyCurrent densityComputingMilieux_MISCELLANEOUS
researchProduct

Enhancing domain wall velocity through interface intermixing in W-CoFeB-MgO films with perpendicular anisotropy

2019

We study the influence of He+ irradiation induced interface intermixing on magnetic domain wall (DW) dynamics in W-CoFeB (0.6 nm)-MgO ultrathin films, which exhibit high perpendicular magnetic anisotropy and large Dzyaloshinskii-Moriya interaction (DMI) values. Whereas the pristine films exhibit strong DW pinning, we observe a large increase in the DW velocity in the creep regime upon He+ irradiation, which is attributed to the reduction of pinning centers induced by interface intermixing. Asymmetric in-plane field-driven domain expansion experiments show that the DMI value is slightly reduced upon irradiation, and a direct relationship between DMI and interface anisotropy is demonstrated. …

010302 applied physicsMaterials sciencePhysics and Astronomy (miscellaneous)SpintronicsMagnetic domainCondensed matter physics530 PhysicsPerpendicular magnetic anisotropy02 engineering and technology530 Physik021001 nanoscience & nanotechnology01 natural sciences[SPI]Engineering Sciences [physics]Domain wall (magnetism)Creep[PHYS.COND.CM-GEN]Physics [physics]/Condensed Matter [cond-mat]/Other [cond-mat.other]0103 physical sciencesPerpendicular anisotropyIrradiation[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyAnisotropyComputingMilieux_MISCELLANEOUS
researchProduct

Reactive Sintering of molybdenum disilicide by Spark Plasma Sintering from mechanically activated powder mixtures: Processing parameters and properti…

2008

Abstract Dense molybdenum disilicide with a nano-organized microstructure was synthesized by mechanical activation, by producing nanostructured agglomerates of a 1:2 mixture of Mo and Si, followed by the synthesis/consolidation in one step using SPS technology. In order to synthesize a dense molybdenum disilicide with a perfectly controlled microstructure, an investigation of the influence of Spark Plasma Sintering processing parameters (temperature, heating rate, mechanical pressure and holding time) on the chemical composition and the microstructure characteristics has been performed. The present work shows also that the so-obtained materials present better oxidation resistance in compari…

010302 applied physicsMaterials scienceScanning electron microscopeMechanical EngineeringMetallurgyMetals and AlloysMolybdenum disilicideSpark plasma sinteringSintering02 engineering and technology[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnologyMicrostructure01 natural scienceschemistry.chemical_compoundchemistryMechanics of MaterialsAgglomerate[ CHIM.MATE ] Chemical Sciences/Material chemistry0103 physical sciencesOxidizing agentVickers hardness testMaterials Chemistry0210 nano-technologyComputingMilieux_MISCELLANEOUS
researchProduct

Nucleation of GaN nanowires grown by plasma-assisted molecular beam epitaxy: The effect of temperature

2011

Abstract The growth of GaN nanowires by means of plasma assisted molecular beam epitaxy directly on Si(1 1 1) has been investigated as a function of temperature. Statistical analysis of scanning electron microscopy pictures taken for different growth temperatures has revealed that density, diameter, length and length dispersion of nanowires were strongly dependent on temperature. Length dispersion, in particular, was found to be significant at high temperature. These features have been assigned to the different duration of the nucleation process with temperature, namely to the dependence with temperature of the time necessary for the size increase of the three-dimensional precursors up to a…

010302 applied physicsMaterials scienceScanning electron microscopeNucleationNanowireAnalytical chemistry02 engineering and technologyPlasma021001 nanoscience & nanotechnologyCondensed Matter PhysicsCritical value01 natural sciencesSize increaseInorganic ChemistryCondensed Matter::Materials ScienceCrystallography0103 physical sciencesMaterials Chemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]0210 nano-technologyDispersion (chemistry)ComputingMilieux_MISCELLANEOUSMolecular beam epitaxy
researchProduct

The role of seed electrons on the plasma breakdown and preglow of electron cyclotron resonance ion source

2009

The 14 GHz Electron Cyclotron Resonance Ion Source at University of Jyväskylä, Department of Physics (JYFL) has been operated in pulsed mode in order to study the plasma breakdown and preglow effect. It was observed that the plasma breakdown time and preglow characteristics are affected by seed electrons provided by a continuous low power microwave signal at secondary frequency. Sustaining low density plasma during the off-period of high power microwave pulses at the primary frequency shifts the charge state distribution of the preglow transient toward higher charge states. This could be exploited for applications requiring fast and efficient ionization of radioactive elements as proposed f…

010302 applied physicsMaterials science[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]Cyclotron resonancechemistry.chemical_elementPlasmaElectron01 natural sciences7. Clean energyElectron cyclotron resonanceIon source010305 fluids & plasmasNeonchemistryIonizationBeta (plasma physics)0103 physical sciencesAtomic physicsInstrumentationComputingMilieux_MISCELLANEOUSReview of Scientific Instruments
researchProduct

State-space formulation of scalar Preisach hysteresis model for rapid computation in time domain

2015

A state-space formulation of classical scalar Preisach model (CSPM) of hysteresis is proposed. The introduced state dynamics and memory interface allow to use the state equation, which is rapid in calculation, instead of the original Preisach equation. The main benefit of the proposed modeling approach is the reduced computational effort which requires only a single integration over the instantaneous line segment in the Preisach plane. Numerical evaluations of the computation time and model accuracy are provided in comparison to the CSPM which is taken as a reference model.

010302 applied physicsMemory interfacePreisach model of hysteresis0209 industrial biotechnologyApplied MathematicsComputationScalar (mathematics)02 engineering and technologySystems and Control (eess.SY)01 natural sciences020901 industrial engineering & automationLine segmentControl theoryModeling and Simulation0103 physical sciencesFOS: Electrical engineering electronic engineering information engineeringApplied mathematicsComputer Science - Systems and ControlTime domainReference modelMathematics
researchProduct

Integral imaging with Fourier-plane recording

2017

Integral Imaging is well known for its capability of recording both the spatial and the angular information of threedimensional (3D) scenes. Based on such an idea, the plenoptic concept has been developed in the past two decades, and therefore a new camera has been designed with the capacity of capturing the spatial-angular information with a single sensor and after a single shot. However, the classical plenoptic design presents two drawbacks, one is the oblique recording made by external microlenses. Other is loss of information due to diffraction effects. In this contribution report a change in the paradigm and propose the combination of telecentric architecture and Fourier-plane recordin…

010302 applied physicsMicrolensDiffractionIntegral imagingPlane (geometry)Computer sciencebusiness.industryComputationComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONOblique case01 natural sciencesÒptica Aparells i instruments010309 opticssymbols.namesakeFourier transformOptics0103 physical sciencessymbolsComputer visionDepth of fieldArtificial intelligenceFourier Anàlisi debusinessThree-Dimensional Imaging, Visualization, and Display 2017
researchProduct

Hydrodynamic Modeling of Transport and Noise Phenomena in Bipolar Two-Terminal Silicon Structures

1998

International audience

010302 applied physicsNoise temperatureMaterials scienceSiliconMechanical EngineeringShot noisechemistry.chemical_element02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences[SPI.TRON]Engineering Sciences [physics]/Electronics[PHYS.PHYS.PHYS-COMP-PH]Physics [physics]/Physics [physics]/Computational Physics [physics.comp-ph]NoisechemistryTerminal (electronics)Mechanics of Materials0103 physical sciencesElectronic engineeringGeneral Materials Science[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat]0210 nano-technologyComputingMilieux_MISCELLANEOUSMaterials Science Forum
researchProduct

Electromagnetically induced switching of ferroelectric thin films

2007

We analyze the interaction of an electromagnetic spike (one cycle) with a thin layer of ferroelectric medium with two equilibrium states. The model is the set of Maxwell equations coupled to the undamped Landau-Khalatnikov equation, where we do not assume slowly varying envelopes. From linear-scattering theory, we show that low-amplitude pulses can be completely reflected by the medium. Large-amplitude pulses can switch the ferroelectric. Using numerical simulations and analysis, we study this switching for long and short pulses, estimate the switching times, and provide useful information for experiments.

010302 applied physicsPhysicsCondensed matter physicsScatteringNumerical analysisThin layerFOS: Physical sciencesPattern Formation and Solitons (nlin.PS)Condensed Matter Physics01 natural sciencesFerroelectricityNonlinear Sciences - Pattern Formation and SolitonsElectronic Optical and Magnetic Materialssymbols.namesakeAmplitudeMaxwell's equations0103 physical sciencessymbolsFerroelectric thin filmsThin film010306 general physicsComputingMilieux_MISCELLANEOUS
researchProduct