Search results for "Gas detector"

showing 10 items of 30 documents

Large bulk Micromegas detectors for TPC applications

2009

A large volume TPC will be used in the near future in a variety of experiments including T2K. The bulk Micromegas detector for this TPC is built using a novel production technique particularly suited for compact, thin and robust low mass detectors. The capability to pave a large Surface with a simple mounting Solution and small dead space is of particular interest for these applications. We have built several large bulk Micromegas detectors (36 x 34 cm(2)) and we have tested one in the former HARP field cage with a magnetic field. Prototypes cards of the T2K front end electronics, based on the AFTER ASIC chip, have been used in this TPC test for the first time. Cosmic ray data have been acq…

T2KPhysicsNuclear and High Energy PhysicsEnergy lossField (physics)Physics::Instrumentation and Detectorsbusiness.industryDetectorMicroMegas detectorCosmic rayNuclear physicsOpticsApplication-specific integrated circuitPoint (geometry)TPCbusinessInstrumentationMicromegasHARPNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture

2014

[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging fu…

Enginyeria -- InstrumentsMECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASMaterials sciencePhysics - Instrumentation and DetectorsTime projection chambersParticle tracking detectors (Gaseous detectors)chemistry.chemical_elementTrimethylamineFOS: Physical sciencesElectron7. Clean energyEngineering instrumentsTECNOLOGIA ELECTRONICAchemistry.chemical_compoundXenonOpticsWafer[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]InstrumentationMathematical PhysicsDetectors de radiacióTime projection chamberbusiness.industryActive volumeMicroMegas detectorInstrumentation and Detectors (physics.ins-det)Double-beta decay detectorschemistryVolume (thermodynamics)Nuclear countersFísica nuclearbusiness
researchProduct

Detection and quantification of lung cancer biomarkers by a micro-analytical device using a single metal oxide-based gas sensor

2018

International audience; The analysis of exhaled volatile organic compounds (VOCs) related to lung cancer is a very promising wayin medical diagnosis because it is non-invasive and much less expensive than traditional medical analysisused so far. In that sense, a silicon micro-analytical platform consisting of a micro-preconcentrator cou-pled to a silicon spiral gas chromatographic micro-column was built, and a metal oxide-based gas sensorwas used as a miniaturized gas detector. This micro-fabricated device was successfully tested to selec-tively detect low concentrations of VOCs considered as lung cancer biomarkers, within a few minuteseven in presence of high concentrations of water vapor …

Materials scienceSiliconOxidechemistry.chemical_element02 engineering and technology01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsMetalchemistry.chemical_compoundMaterials ChemistrymedicineGas detectorElectrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsLung cancerInstrumentationVolume concentration[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Chromatography010401 analytical chemistrytechnology industry and agricultureMetals and Alloys021001 nanoscience & nanotechnologyCondensed Matter Physicsmedicine.disease0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistryvisual_artCarbon dioxidevisual_art.visual_art_medium0210 nano-technologyWater vapor
researchProduct

SiPMs coated with TPB: coating protocol and characterization for NEXT

2012

[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifte…

Materials sciencePhysics - Instrumentation and DetectorsFOS: Physical scienceschemistry.chemical_elementengineering.materialWavelength shifterTracking (particle physics)7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentTECNOLOGIA ELECTRONICAHigh Energy Physics - Experiment (hep-ex)XenonSilicon photomultiplierCoating0103 physical sciencesSensitivity (control systems)Visible and IR photons (solid-state)010306 general physicsInstrumentationPhoton detectors for UVMathematical PhysicsScintillationTime projection chamber010308 nuclear & particles physicsbusiness.industryTime projection Chambers (TPC)FísicaDetectorsInstrumentation and Detectors (physics.ins-det)Gas detectorsScintillators scintillation and light emission processes (solid gas and liquid scintillators)Detectors de gasoschemistryParticle tracking detectors (Solid-state detectors)engineeringOptoelectronicsbusiness
researchProduct

A cylindrical GEM detector with analog readout for the BESIII experiment

2016

Abstract A cylindrical GEM detector with analog readout is under development for the upgrade of the Inner Tracker of the BESIII experiment at IHEP (Beijing). The new detector will match the requirements for momentum resolution ( σ pt / p t ~ 0.5 % at 1 GeV) and radial resolution ( σ xy ~ 120 μ m ) of the existing drift chamber and will improve significantly the spatial resolution along the beam direction ( σ z ~ 150 μ m ) with very small material budget (less than 1.5% of X 0 ). With respect to the state of the art the following innovations will be deployed: a lighter mechanical structure based on Rohacell, a new XV anode readout plane with jagged strip layout to reduce the parasitic capaci…

PhysicsNuclear and High Energy PhysicsGEMBESIII experiment; GEM; Micro-pattern gas detectors; Tracking detectorsPhysics::Instrumentation and Detectors010308 nuclear & particles physicsInstrumentationDetectorResolution (electron density)BESIII experimentMicro-pattern gas detectors01 natural sciencesMagnetic fieldAnodeNuclear physicsMomentumTracking detectorsParasitic capacitance0103 physical sciencesBESIII experiment; GEM; Micro-pattern gas detectors; Tracking detectors; Nuclear and High Energy Physics; Instrumentation010306 general physicsInstrumentationImage resolutionNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Development of a thermodesorption sensor system for the detection of residual solvents in packaging materials

2004

Application specific sensor systems (formerly electronic noses) use static headspace for the volatile generation from condensed phase samples. This extraction method is very simple to implement, but suffers many drawbacks, i.e. in terms of efficiency or sensitivity to partitioning and is very time-consuming. To circumvent these problems, we developed a new method using dynamic extraction of volatiles (stripping). Although this method is known for GC (gas chromatography), the utilization of direct thermal desorption (DTD) in conjunction with gas sensors is quite novel. The unhandy cold trapping step can be avoided by a software integration of the instantaneous volatile concentration over the…

business.industryChemistry[SPI.GPROC] Engineering Sciences [physics]/Chemical and Process EngineeringThermal desorptionAnalytical chemistry02 engineering and technology[SDV.IDA] Life Sciences [q-bio]/Food engineering010402 general chemistry021001 nanoscience & nanotechnologyResidual01 natural sciencesStripping (fiber)0104 chemical sciencesLinearizationDesorption[SDV.IDA]Life Sciences [q-bio]/Food engineeringCalibrationGas detector[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringGas chromatography0210 nano-technologyProcess engineeringbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Reconstruction of Micropattern Detector Signals using Convolutional Neural Networks

2017

Micropattern gaseous detector (MPGD) technologies, such as GEMs or MicroMegas, are particularly suitable for precision tracking and triggering in high rate environments. Given their relatively low production costs, MPGDs are an exemplary candidate for the next generation of particle detectors. Having acknowledged these advantages, both the ATLAS and CMS collaborations at the LHC are exploiting these new technologies for their detector upgrade programs in the coming years. When MPGDs are utilized for triggering purposes, the measured signals need to be precisely reconstructed within less than 200 ns, which can be achieved by the usage of FPGAs. In this work, we present a novel approach to id…

HistoryLarge Hadron ColliderPhysics::Instrumentation and Detectorsbusiness.industryComputer scienceNoise (signal processing)DetectorMicroMegas detectorTracking (particle physics)Convolutional neural networkComputer Science ApplicationsEducationUpgradebusinessField-programmable gate arrayComputer hardwareJournal of Physics: Conference Series
researchProduct

The COMPASS Setup for Physics with Hadron Beams

2015

The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making use of a large part of the apparatus that was previously built for spin structure studies with a muon beam, it also features a new target system as well as new or upgraded detectors. The hadron setup is able to operate at the high incident hadron flux available at CERN. It is characterised by large angular and momentum coverages, large and nearly flat acceptances, and good two and three-particle mass resolutions. In 2008 and 2009 it was successful…

Particle physicsCalorimetry; Data acquisition and reconstruction; Fixed target experiment for hadron spectroscopy; Front-end electronics; Micro Pattern detectors and Drift chambers; Monte-Carlo simulation; RICH; Instrumentation; Nuclear and High Energy PhysicsNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronFOS: Physical sciencesMonte-Carlo simulation[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Calorimetryacquisition and reconstruction01 natural sciences7. Clean energyMicro Pattern detectors and Drift chambersHigh Energy Physics - ExperimentNuclear physicsMomentumHigh Energy Physics - Experiment (hep-ex)CompassHadron spectroscopy0103 physical sciencesDetectors and Experimental Techniques010306 general physicsRICHInstrumentationFixed target experiment for hadron spectroscopyPhysicsDataLarge Hadron Collider010308 nuclear & particles physicsMicroMegas detectorFront-end electronicsInstrumentation and Detectors (physics.ins-det)Micro Pattern detectorsand Drift chambersData acquisition and reconstructionGas electron multiplierPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentParticle Physics - ExperimentBeam (structure)Front-end electronicMicro Pattern detectors and Drift chamber
researchProduct

E-Nose Application to Food Industry Production

2016

Food companies worldwide must constantly engage in product development to stay competitive, cover existing markets, explore new markets, and meet key consumer requirements. This ongoing development places high demands on achieving quality at all levels, particularly in terms of food safety, integrity, quality, nutrition, and other health effects. Food product research is required to convert the initial product idea into a formulation for upscaling production with ensured significant results. Sensory evaluation is an effective component of the whole process. It is especially important in the last step in the development of new products to ensure product acceptance. In that stage, measurement…

EngineeringSensor systemsFood industryFood industryProcess (engineering)media_common.quotation_subjectPrincipal component analysis02 engineering and technology01 natural sciencesElectronic noseTECNOLOGIA ELECTRONICA0202 electrical engineering electronic engineering information engineeringProduction (economics)Quality (business)Product (category theory)Electrical and Electronic EngineeringInstrumentationPollution measurementmedia_commonbusiness.industry020208 electrical & electronic engineering010401 analytical chemistryProductionGas detectorsFood safety0104 chemical sciencesFood packagingRisk analysis (engineering)New product developmentbusiness
researchProduct

Characterization of a medium size Xe/TMA TPC instrumented with microbulk Micromegas, using low-energy gamma-rays

2014

NEXT-MM is a general-purpose high pressure (10 bar, $\sim25$ l active volume) Xenon-based TPC, read out in charge mode with an 8 cm $\times$8 cm-segmented 700 cm$^2$ plane (1152 ch) of the latest microbulk-Micromegas technology. It has been recently commissioned at University of Zaragoza as part of the R&D of the NEXT $0\nu\beta\beta$ experiment, although the experiment's first stage is currently being built based on a SiPM/PMT-readout concept relying on electroluminescence. Around 2 million events were collected during the last months, stemming from the low energy $\gamma$-rays emitted by a $^{241}$Am source when interacting with the Xenon gas ($\epsilon$ = 26, 30, 59.5 keV). The localized…

MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURASDrift velocityPhysics - Instrumentation and DetectorsXenonTime projection chambersDouble-beta decayNuclear physicschemistry.chemical_element01 natural sciencesMicrobulkNuclear physicsTECNOLOGIA ELECTRONICASilicon photomultiplierXenon0103 physical sciencesTrimethylamineDiffusion (business)010306 general physicsInstrumentationMathematical PhysicsDetectors de radiacióPhysicsAtmospheric pressure010308 nuclear & particles physicsGamma rayMicroMegas detectorHigh pressurechemistryTime projection chamberNuclear countersFísica nuclearMicromegasBar (unit)
researchProduct