Search results for "Gaussian"
showing 10 items of 652 documents
Crop Phenology Retrieval Through Gaussian Process Regression
2021
Monitoring crop phenology significantly assists agricultural managing practices and plays an important role in crop yield predictions. Multi-temporal satellite-based observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or deriving biophysical variables. This study presents a framework for automatic corn phenology characterization based on high spatial and temporal resolution time series. By using the Difference Vegetation Index (DVI) estimated from Sentinel-2 data over Iowa (US), independent phenological models were optimized using Gaussian Processes regression. Their respective performances were assessed based on simulated phenological indi…
Crop Yield Estimation and Interpretability With Gaussian Processes
2021
This work introduces the use of Gaussian processes (GPs) for the estimation and understanding of crop development and yield using multisensor satellite observations and meteo- rological data. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables typically measured at meteorological stations. A com- posite covariance is used in the GP model to account for varying scales, nonstationary, and nonlinear processes. The GP model reports noticeable gains in terms of accuracy with respect to other machine learning approaches for the estimation of corn, wheat, and soybean …
Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression
2021
Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time seri…
Multi-scale morphology of the galaxy distribution
2006
Many statistical methods have been proposed in the last years for analyzing the spatial distribution of galaxies. Very few of them, however, can handle properly the border effects of complex observational sample volumes. In this paper, we first show how to calculate the Minkowski Functionals (MF) taking into account these border effects. Then we present a multiscale extension of the MF which gives us more information about how the galaxies are spatially distributed. A range of examples using Gaussian random fields illustrate the results. Finally we have applied the Multiscale Minkowski Functionals (MMF) to the 2dF Galaxy Redshift Survey data. The MMF clearly indicates an evolution of morpho…
Distributed channel prediction for multi-agent systems
2017
Los sistemas multiagente (MAS) se comunican a través de una red inalámbrica para coordinar sus acciones e informar sobre el estado de su misión. La conectividad y el rendimiento del sistema pueden mejorarse mediante la predicción de la ganancia del canal. Presentamos un esquema basado en regresión de procesos gaussianos (GPR) distribuidos para predecir el canal inalámbrico en términos de la potencia recibida en el MAS. El esquema combina una máquina de comité bayesiano con un esquema de consenso medio, distribuyendo así no sólo la memoria sino también la carga computacional y de comunicación. A través de simulaciones de Monte Carlo, demostramos el rendimiento del GPR propuesto. RACHEL TEC20…
Integrating Physics Modelling with Machine Learning for Remote Sensing
2020
L’observació de la Terra a partir de les dades proporcionades per sensors abord de satèl·lits, així com les proporcionades per models de transferència radiativa o climàtics, juntament amb les mesures in situ proporcionen una manera sense precedents de monitorar el nostre planeta amb millors resolucions espacials i temporals. La riquesa, quantitat i diversitat de les dades adquirides i posades a disposició també augmenta molt ràpidament. Aquestes dades ens permeten predir el rendiment dels cultius, fer un seguiment del canvi d’ús del sòl com ara la desforestació, supervisar i respondre als desastres naturals, i predir i mitigar el canvi climàtic. Per tal de fer front a tots aquests reptes, l…
Prediction of peak shape in hydro-organic and micellar-organic liquid chromatography as a function of mobile phase composition
2007
A simple model is proposed that relates the parameters describing the peak width with the retention time, which can be easily predicted as a function of mobile phase composition. This allows the further prediction of peak shape with global errors below 5%, using a modified Gaussian model with a parabolic variance. The model is useful in the optimisation of chromatographic resolution to assess an eventual overlapping of close peaks. The dependence of peak shape with mobile phase composition was studied for mobile phases containing acetonitrile in the presence and absence of micellised surfactant (micellar-organic and hydro-organic reversed-phase liquid chromatography, RPLC). In micellar RPLC…
Mapping landscape canopy nitrogen content from space using PRISMA data
2021
Abstract Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced …
Active Learning for Monitoring Network Optimization
2012
Kernel-based active learning strategies were studied for the optimization of environmental monitoring networks. This chapter introduces the basic machine learning algorithms originated in the statistical learning theory of Vapnik (1998). Active learning is closer to an optimization done using sequential Gaussian simulations. The chapter presents the general ideas of statistical learning from data. It derives the basics of kernel-based support vector algorithms. The active learning framework is presented and machine learning extensions for active learning are described in the chapter. Kernel-based active learning strategies are tested on real case studies. The chapter explores the use of a c…
A robust aerial image registration method using Gaussian mixture models
2014
Aerial image registration is one of the bases in many aerospace applications, such as aerial reconnaissance and aerial mapping. In this paper, we propose a novel aerial image registration algorithm which is based on Gaussian mixture models. First of all, considering the characters of the aerial images, the work uses a shape feature detector which computes the boundaries of regions with nearly the same gray-value to extract invariant feature. Then, a Gaussian mixture models (GMM) based image registration model is built and solved to estimate the transformation matrix between two aerial images. Furthermore, the proposed method is applied on real aerial images, and the results demonstrate the …