Search results for "Gaussian"

showing 10 items of 652 documents

Crop Phenology Retrieval Through Gaussian Process Regression

2021

Monitoring crop phenology significantly assists agricultural managing practices and plays an important role in crop yield predictions. Multi-temporal satellite-based observations allow analyzing vegetation seasonal dynamics over large areas by using vegetation indices or deriving biophysical variables. This study presents a framework for automatic corn phenology characterization based on high spatial and temporal resolution time series. By using the Difference Vegetation Index (DVI) estimated from Sentinel-2 data over Iowa (US), independent phenological models were optimized using Gaussian Processes regression. Their respective performances were assessed based on simulated phenological indi…

2. Zero hunger010504 meteorology & atmospheric sciencesMean squared errorPhenology0211 other engineering and technologies02 engineering and technologyVegetation15. Life on land01 natural sciencesRegressionsymbols.namesakeKrigingTemporal resolutionStatisticssymbolsTime seriesGaussian process021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematics2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Crop Yield Estimation and Interpretability With Gaussian Processes

2021

This work introduces the use of Gaussian processes (GPs) for the estimation and understanding of crop development and yield using multisensor satellite observations and meteo- rological data. The proposed methodology combines synergistic information on canopy greenness, biomass, soil, and plant water content from optical and microwave sensors with the atmospheric variables typically measured at meteorological stations. A com- posite covariance is used in the GP model to account for varying scales, nonstationary, and nonlinear processes. The GP model reports noticeable gains in terms of accuracy with respect to other machine learning approaches for the estimation of corn, wheat, and soybean …

2. Zero hungerEstimation010504 meteorology & atmospheric sciencesCrop yieldProductivitat agrícola0207 environmental engineeringProcessos estocàstics02 engineering and technology15. Life on landGeotechnical Engineering and Engineering Geology01 natural sciencessymbols.namesake13. Climate actionStatisticssymbolsElectrical and Electronic Engineering020701 environmental engineeringGaussian process0105 earth and related environmental sciencesMathematicsInterpretabilityIEEE Geoscience and Remote Sensing Letters
researchProduct

Monitoring Cropland Phenology on Google Earth Engine Using Gaussian Process Regression

2021

Monitoring cropland phenology from optical satellite data remains a challenging task due to the influence of clouds and atmospheric artifacts. Therefore, measures need to be taken to overcome these challenges and gain better knowledge of crop dynamics. The arrival of cloud computing platforms such as Google Earth Engine (GEE) has enabled us to propose a Sentinel-2 (S2) phenology end-to-end processing chain. To achieve this, the following pipeline was implemented: (1) the building of hybrid Gaussian Process Regression (GPR) retrieval models of crop traits optimized with active learning, (2) implementation of these models on GEE (3) generation of spatiotemporally continuous maps and time seri…

2. Zero hungerland surface phenology (LSP)010504 meteorology & atmospheric sciencesScienceQGoogle Earth Engine (GEE)0211 other engineering and technologiesGaussian Process Regression (GPR)02 engineering and technology15. Life on land01 natural sciencescrop traitsGeneral Earth and Planetary Sciencesland surface phenology (LSP); Google Earth Engine (GEE); Gaussian Process Regression (GPR); Sentinel-2; gap-filling; crop traits; hybrid modelsSentinel-2gap-filling021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote Sensing
researchProduct

Multi-scale morphology of the galaxy distribution

2006

Many statistical methods have been proposed in the last years for analyzing the spatial distribution of galaxies. Very few of them, however, can handle properly the border effects of complex observational sample volumes. In this paper, we first show how to calculate the Minkowski Functionals (MF) taking into account these border effects. Then we present a multiscale extension of the MF which gives us more information about how the galaxies are spatially distributed. A range of examples using Gaussian random fields illustrate the results. Finally we have applied the Multiscale Minkowski Functionals (MMF) to the 2dF Galaxy Redshift Survey data. The MMF clearly indicates an evolution of morpho…

2dF Galaxy Redshift SurveyPhysicsRandom fieldScale (ratio)GaussianAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalaxysymbols.namesakeDistribution (mathematics)Space and Planetary ScienceMinkowski spaceRange (statistics)symbols
researchProduct

Distributed channel prediction for multi-agent systems

2017

Los sistemas multiagente (MAS) se comunican a través de una red inalámbrica para coordinar sus acciones e informar sobre el estado de su misión. La conectividad y el rendimiento del sistema pueden mejorarse mediante la predicción de la ganancia del canal. Presentamos un esquema basado en regresión de procesos gaussianos (GPR) distribuidos para predecir el canal inalámbrico en términos de la potencia recibida en el MAS. El esquema combina una máquina de comité bayesiano con un esquema de consenso medio, distribuyendo así no sólo la memoria sino también la carga computacional y de comunicación. A través de simulaciones de Monte Carlo, demostramos el rendimiento del GPR propuesto. RACHEL TEC20…

:CIENCIAS TECNOLÓGICAS [UNESCO]Wireless networkComputer sciencebusiness.industryDistributed computingMulti-agent systemMonte Carlo method020206 networking & telecommunicationsBayesian committee machine02 engineering and technologyUNESCO::CIENCIAS TECNOLÓGICASKriging0202 electrical engineering electronic engineering information engineeringWireless020201 artificial intelligence & image processingmulti-agent systemsbusinessgaussian process regressionSimulationCommunication channelaverage consensus scheme
researchProduct

Integrating Physics Modelling with Machine Learning for Remote Sensing

2020

L’observació de la Terra a partir de les dades proporcionades per sensors abord de satèl·lits, així com les proporcionades per models de transferència radiativa o climàtics, juntament amb les mesures in situ proporcionen una manera sense precedents de monitorar el nostre planeta amb millors resolucions espacials i temporals. La riquesa, quantitat i diversitat de les dades adquirides i posades a disposició també augmenta molt ràpidament. Aquestes dades ens permeten predir el rendiment dels cultius, fer un seguiment del canvi d’ús del sòl com ara la desforestació, supervisar i respondre als desastres naturals, i predir i mitigar el canvi climàtic. Per tal de fer front a tots aquests reptes, l…

:MATEMÁTICAS [UNESCO]remote sensingmachine learning:GEOGRAFÍA [UNESCO]:CIENCIAS TECNOLÓGICAS [UNESCO]gaussian processesUNESCO::CIENCIAS TECNOLÓGICASUNESCO::GEOGRAFÍAUNESCO::MATEMÁTICAS
researchProduct

Prediction of peak shape in hydro-organic and micellar-organic liquid chromatography as a function of mobile phase composition

2007

A simple model is proposed that relates the parameters describing the peak width with the retention time, which can be easily predicted as a function of mobile phase composition. This allows the further prediction of peak shape with global errors below 5%, using a modified Gaussian model with a parabolic variance. The model is useful in the optimisation of chromatographic resolution to assess an eventual overlapping of close peaks. The dependence of peak shape with mobile phase composition was studied for mobile phases containing acetonitrile in the presence and absence of micellised surfactant (micellar-organic and hydro-organic reversed-phase liquid chromatography, RPLC). In micellar RPLC…

AcetonitrilesChromatographyResolution (mass spectrometry)ChemistryOrganic ChemistryAnalytical chemistrySodium Dodecyl SulfateGeneral MedicineFunction (mathematics)Reversed-phase chromatographyModels TheoreticalBiochemistryHigh-performance liquid chromatographyAnalytical Chemistrysymbols.namesakechemistry.chemical_compoundPulmonary surfactantPhase (matter)symbolsAcetonitrileGaussian network modelAlgorithmsChromatography High Pressure LiquidJournal of Chromatography A
researchProduct

Mapping landscape canopy nitrogen content from space using PRISMA data

2021

Abstract Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced …

Active learningActive learning (machine learning)Computer scienceDimensionality reductionHyperspectral imagingPRISMAContext (language use)CollinearityHybrid retrievalDimensionality reductionImaging spectroscopyAtomic and Molecular Physics and OpticsComputer Science ApplicationsImaging spectroscopyCHIMEKrigingEnMAPCanopy nitrogen contentComputers in Earth SciencesEngineering (miscellaneous)Gaussian process regressionRemote sensingISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Active Learning for Monitoring Network Optimization

2012

Kernel-based active learning strategies were studied for the optimization of environmental monitoring networks. This chapter introduces the basic machine learning algorithms originated in the statistical learning theory of Vapnik (1998). Active learning is closer to an optimization done using sequential Gaussian simulations. The chapter presents the general ideas of statistical learning from data. It derives the basics of kernel-based support vector algorithms. The active learning framework is presented and machine learning extensions for active learning are described in the chapter. Kernel-based active learning strategies are tested on real case studies. The chapter explores the use of a c…

Active learningComputer scienceActive learning (machine learning)Kernel-based support vector algorithmsMachine learningGaussian simulationsData scienceMonitoring network optimization
researchProduct

A robust aerial image registration method using Gaussian mixture models

2014

Aerial image registration is one of the bases in many aerospace applications, such as aerial reconnaissance and aerial mapping. In this paper, we propose a novel aerial image registration algorithm which is based on Gaussian mixture models. First of all, considering the characters of the aerial images, the work uses a shape feature detector which computes the boundaries of regions with nearly the same gray-value to extract invariant feature. Then, a Gaussian mixture models (GMM) based image registration model is built and solved to estimate the transformation matrix between two aerial images. Furthermore, the proposed method is applied on real aerial images, and the results demonstrate the …

Aerial surveyComputer sciencebusiness.industryFeature detectorCognitive NeuroscienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage registrationComputerApplications_COMPUTERSINOTHERSYSTEMSPattern recognitionComputer Science Applications1707 Computer Vision and Pattern RecognitionMixture modelAerial images; Feature detector; Gaussian mixture models; Image registration; Computer Science Applications1707 Computer Vision and Pattern Recognition; Cognitive Neuroscience; Artificial IntelligenceComputer Science ApplicationsComputer Science::RoboticsComputer Science::Systems and ControlArtificial IntelligenceComputer Science::Computer Vision and Pattern RecognitionAerial imagesComputer visionAerial reconnaissanceArtificial intelligenceGaussian mixture modelsbusinessAerial imageImage registration
researchProduct