Search results for "Gene expression profiling"

showing 10 items of 656 documents

C3cotyledons are followed by C4leaves: intra-individual transcriptome analysis ofSalsola soda(Chenopodiaceae)

2016

The genome of Salsola soda allows a transition from C3 to C4 photosynthesis. A developmental transcriptome series revealed novel genes showing expression patterns similar to those encoding C4 proteins.

0106 biological sciences0301 basic medicineSalsolaC4 photosynthesisfood.ingredientSalsolaPhysiologyPlant ScienceChenopodiaceaecotyledonBiology01 natural sciences03 medical and health sciencesfoodRNA seqBotanyPhotosynthesisChenopodiaceaedevelopmentSalsola sodaCarbon IsotopesleafCaryophyllalesGene Expression Profilingfood and beveragesbiology.organism_classificationCaryophyllalesPlant Leaves030104 developmental biologyMRNA SequencingSeedlingTranscriptomePhosphoenolpyruvate carboxylaseCotyledonResearch Paper010606 plant biology & botanyJournal of Experimental Botany
researchProduct

The Pseudomonas fluorescens Siderophore Pyoverdine Weakens Arabidopsis thaliana Defense in Favor of Growth in Iron-Deficient Conditions

2016

SPE EA BIOME IPM UB INRA; International audience; Pyoverdines are siderophores synthesized by fluorescent Pseudomonas spp. Under iron-limiting conditions, these high-affinity ferric iron chelators are excreted by bacteria in the soil to acquire iron. Pyoverdines produced by beneficial Pseudomonas spp. ameliorate plant growth. Here, we investigate the physiological incidence and mode of action of pyoverdine from Pseudomonas fluorescens C7R12 on Arabidopsis (Arabidopsis thaliana) plants grown under iron-sufficient or iron-deficient conditions. Pyoverdine was provided to the medium in its iron-free structure (apo-pyoverdine), thus mimicking a situation in which it is produced by bacteria. Rema…

0106 biological sciences0301 basic medicineSiderophoreAgronomieFMN ReductasePhysiologyIronArabidopsis[ SDV.SA.SDS ] Life Sciences [q-bio]/Agricultural sciences/Soil study[SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySiderophoresPseudomonas fluorescensPlant Science[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studyPseudomonas fluorescens01 natural sciencesMicrobiology03 medical and health scienceschemistry.chemical_compoundEthylene[ SDV.SA.AGRO ] Life Sciences [q-bio]/Agricultural sciences/AgronomyGene Expression Regulation PlantArabidopsisGeneticsmedicineArabidopsis thalianaHomeostasisCation Transport Proteins2. Zero hungerPyoverdinebiologyIndoleacetic AcidsArabidopsis ProteinsScience des solsGene Expression ProfilingPseudomonasfood and beveragesArticlesEthylenesbiology.organism_classification030104 developmental biologychemistryFerricSalicylic AcidOligopeptidesBacteria010606 plant biology & botanymedicine.drugAbscisic Acid
researchProduct

Molecular Responses to Small Regulating Molecules against Huanglongbing Disease

2016

Huanglongbing (HLB; citrus greening) is the most devastating disease of citrus worldwide. No cure is yet available for this disease and infected trees generally decline after several months. Disease management depends on early detection of symptoms and chemical control of insect vectors. In this work, different combinations of organic compounds were tested for the ability to modulate citrus molecular responses to HLB disease beneficially. Three small-molecule regulating compounds were tested: 1) L-arginine, 2) 6-benzyl-adenine combined with gibberellins, and 3) sucrose combined with atrazine. Each treatment contained K-phite mineral solution and was tested at two different concentrations. T…

0106 biological sciences0301 basic medicineSucroseLeavesCitruslcsh:MedicineGene ExpressionSecondary MetabolismPlant ScienceDisaccharidesBiochemistry01 natural sciencesStarchesGene Expression Regulation PlantINFECTIONMedicine and Health SciencesInnatePlant HormonesAmino Acidslcsh:ScienceImmune ResponseGENE-EXPRESSIONMultidisciplinaryNONHOST RESISTANCEbiologyOrganic CompoundsPlant BiochemistryPlant AnatomyChemistryPhenotypeBiochemistryDEFENSE RESPONSESCANDIDATUS-LIBERIBACTER-ASIATICUS; ARABIDOPSIS-THALIANA; NONHOST RESISTANCE; DEFENSE RESPONSES; CITRUS-SINENSIS; GENE-EXPRESSION; INFECTION; PLANTS; IDENTIFICATION; TRANSCRIPTOMEPhysical SciencesHost-Pathogen InteractionsCarbohydrate MetabolismSucrose synthaseAtrazineGibberellinBasic Amino AcidsStarch synthaseSystemic acquired resistanceResearch ArticleCITRUS-SINENSISGeneral Science & TechnologyPhysiologicalImmunologyCarbohydratesCarbohydrate metabolismStressArginine03 medical and health sciencesStress PhysiologicalSettore AGR/07 - Genetica AgrariaGeneticsPLANTSTRANSCRIPTOMESecondary metabolismGenePlant DiseasesIDENTIFICATIONGene Expression Profilinglcsh:ROrganic ChemistryImmunityChemical CompoundsBiology and Life SciencesProteinsPlantBiotic stressCANDIDATUS-LIBERIBACTER-ASIATICUSHormonesGibberellinsImmunity InnateMetabolism030104 developmental biologyGene Expression RegulationARABIDOPSIS-THALIANAbiology.proteinlcsh:Q010606 plant biology & botanyPLOS ONE
researchProduct

Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…

2017

The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…

0106 biological sciences0301 basic medicineTranscription GeneticArabidopsis thalianaPhysiologyArabidopsisSperminePlant ScienceSodium Chloride01 natural scienceschemistry.chemical_compoundGene Expression Regulation PlantLoss of Function MutationArabidopsisPolyaminesMetabolitesArabidopsis thalianaPoliaminesAbscisic acidPrincipal Component AnalysisbiologyAgricultural SciencesSalt ToleranceMetabòlitsmetabolomicsPhenotypeBiochemistryMultigene FamilyMetabolomeCitric Acid CycleSalsCyclopentanes03 medical and health sciencesStress PhysiologicalOxylipinsRNA MessengerIonssalt toleranceArabidopsis ProteinsGene Expression ProfilingSodiumHydrogen PeroxideAgriculture Forestry and Fisheriesbiology.organism_classificationSpermidineGene Ontology030104 developmental biologychemistrythermosperminePutrescineSpermineSaltsOxidoreductases Acting on CH-NH2 Group DonorsTranscriptomejasmonatesPolyaminePolyamine oxidaseAbscisic Acid010606 plant biology & botany
researchProduct

Phylogenomics Identifies an Ancestral Burst of Gene Duplications Predating the Diversification of Aphidomorpha

2019

Aphids (Aphidoidea) are a diverse group of hemipteran insects that feed on plant phloem sap. A common finding in studies of aphid genomes is the presence of a large number of duplicated genes. However, when these duplications occurred remains unclear, partly due to the high relatedness of sequenced species. To better understand the origin of aphid duplications we sequenced and assembled the genome of Cinara cedri, an early branching lineage (Lachninae) of the Aphididae family. We performed a phylogenomic comparison of this genome with 20 other sequenced genomes, including the available genomes of five other aphids, along with the transcriptomes of two species belonging to Adelgidae (a close…

0106 biological sciences:Informàtica::Aplicacions de la informàtica::Bioinformàtica [Àrees temàtiques de la UPC]Gene duplicationAphidomorphaLineage (evolution)010603 evolutionary biology01 natural sciencesGenomeSyntenyDNA sequencingFilogèniaEvolution Molecular03 medical and health sciencessequencia genómicaSpecies SpecificityPhylogenomicsGene duplicationBioinformaticaGeneticsAdelgidaeAnimalsMolecular BiologyEcology Evolution Behavior and SystematicsDiscoveriesPhylogeny030304 developmental biologySegmental duplication0303 health sciencesAphidbiologyWhole Genome SequencingGene Expression Profilinggene duplicationfood and beveragesHigh-Throughput Nucleotide SequencingAfidomorfabiochemical phenomena metabolism and nutritionbiology.organism_classificationaphidsGenòmicaGene Expression RegulationEvolutionary biologyAphidsInsect ProteinsGenèticaMolecular Biology and Evolution
researchProduct

Comparative transcriptomic analysis of the mechanisms underpinning ageing and fecundity in social insects.

2021

The exceptional longevity of social insect queens despite their lifelong high fecundity remains poorly understood in ageing biology. To gain insights into the mechanisms that might underlie ageing in social insects, we compared gene expression patterns between young and old castes (both queens and workers) across different lineages of social insects (two termite, two bee and two ant species). After global analyses, we paid particular attention to genes of the insulin/insulin-like growth factor 1 signalling (IIS)/target of rapamycin (TOR)/juvenile hormone (JH) network, which is well known to regulate lifespan and the trade-off between reproduction and somatic maintenance in solitary insects…

0106 biological sciencesAginginsulinmedia_common.quotation_subjectInsectIsopteraBiology010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyTranscriptome03 medical and health sciencestranscriptomicsSpecies SpecificitylongevityAnimalsSocialityResearch Articles030304 developmental biologymedia_common0303 health sciencessocial insectsAntsjuvenile hormoneGene Expression ProfilingLongevityArticlesTORBeesFecundityFertilityAgeingEvolutionary biologyJuvenile hormoneGeneral Agricultural and Biological SciencesTranscriptomeVitellogeninsPhilosophical transactions of the Royal Society of London. Series B, Biological sciences
researchProduct

Immunity and other defenses in pea aphids, Acyrthosiphon pisum

2010

Background Recent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously ch…

0106 biological sciencesAntimicrobial Peptide; Suppression Subtraction Hybridization; Hemocyte; Alarm Pheromone; Parasitoid WaspGenome InsectHemocyteGenes Insect01 natural sciencesGenomearthropodeAlarm PheromoneParasitoid WaspGenetics0303 health sciencesAphidbiologyAntimicrobial Peptidefood and beveragesGENOMIQUEINSECTEpuceronPEA APHIDSparasiteHost-Pathogen InteractionsSuppression Subtraction Hybridizationagent pathogèneréponse immunitaireACYRTHOSIPHON PISUMAntimicrobial peptidesPEA APHIDS;ACYRTHOSIPHON PISUM;INSECTE;GENOMIQUE010603 evolutionary biology03 medical and health sciencesImmune systemBuchneraImmunityStress PhysiologicalBotanyAnimalsLife ScienceSymbiosisGene030304 developmental biologyResearchgèneGene Expression ProfilingfungiImmunitybiochemical phenomena metabolism and nutritionbiology.organism_classificationAcyrthosiphon pisumGene expression profilingAphidsbacteriaResearch highlight[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisGenome Biology
researchProduct

AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7

2005

AbstractIn plant chloroplasts two superoxide dismutase (SOD) activities occur, FeSOD and Cu/ZnSOD, with reciprocal regulation in response to copper availability. This system presents a unique model to study the regulation of metal-cofactor delivery to an organelle. The Arabidopsis thaliana gene AtCCS encodes a functional homolog to yeast Ccs1p/Lys7p, a copper chaperone for SOD. The AtCCS protein was localized to chloroplasts where it may supply copper to the stromal Cu/ZnSOD. AtCCS mRNA expression levels are upregulated in response to Cu-feeding and senescence. We propose that AtCCS expression is regulated to allow the most optimal use of Cu for photosynthesis.

0106 biological sciencesCu/Zn superoxide dismutaseChloroplastsSaccharomyces cerevisiae ProteinsMolecular Sequence DataArabidopsisBiophysicsSaccharomyces cerevisiaeMetallo chaperoneChloroplastModels Biological01 natural sciencesBiochemistryGreen fluorescent proteinSuperoxide dismutase03 medical and health sciencesDownregulation and upregulationGene Expression Regulation PlantStructural BiologyOrganelleGeneticsAmino Acid SequenceRNA MessengerMolecular BiologyGene030304 developmental biology0303 health sciencesbiologyArabidopsis ProteinsGene Expression ProfilingGenetic Complementation TestCell BiologyYeastChloroplastProtein TransportBiochemistryChaperone (protein)Mutationbiology.proteinSequence AlignmentCopperMolecular Chaperones010606 plant biology & botanyFEBS Letters
researchProduct

Acting locally - affecting globally: RNA sequencing of gilthead sea bream with a mild Sparicotyle chrysophrii infection reveals effects on apoptosis,…

2019

[Background] Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about …

0106 biological sciencesGillGillsApoptosis01 natural sciencesTranscriptomeSparus aurataGene expression0303 health sciencesHigh-Throughput Nucleotide Sequencingmedicine.anatomical_structureLiverHelminthiasis AnimalMonogeneaBiotechnologyResearch ArticleFish Proteinsanimal structureslcsh:QH426-470lcsh:BiotechnologyFisheriesSpleenBiologyMicrobiologyHost-Parasite Interactions03 medical and health sciencesImmune systemIllumina RNA-seqImmunitylcsh:TP248.13-248.65GeneticsmedicineAutophagyAnimals14. Life underwaterPlatelet activationImmune responseTranscriptomics030304 developmental biologyCell ProliferationSequence Analysis RNASparus aurata Sparicotyle chrysophrii Gills Monogenea Ectoparasites Illumina RNA-seq Transcriptomics Apoptosis Immune responseGene Expression ProfilingAquatic animalSea Breamlcsh:GeneticsGene Expression RegulationPlatyhelminthsSparicotyle chrysophriiEctoparasitesSpleen010606 plant biology & botany
researchProduct

Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions

2009

46 pages, 4 tables, 6 figures, 3 additinoal files.

0106 biological sciencesMESH: Genome PlantArabidopsis thalianaGene regulatory networkArabidopsis01 natural sciencesTranscriptomeGene Expression Regulation PlantArabidopsisMESH: Gene Expression Regulation DevelopmentalCluster AnalysisGene Regulatory NetworksMESH: ArabidopsisMESH: EcosystemMESH: Models GeneticOligonucleotide Array Sequence AnalysisMESH: Gene Regulatory NetworksGenetics0303 health sciencesMESH: Stress MechanicalbiologyMESH: Genomicsfood and beveragesGene Expression Regulation DevelopmentalGenomicsPhenotypeAlgorithmsGenome PlantMESH: MutationSystems biologyGenomicsMESH: AlgorithmsComputational biologyMESH: Arabidopsis ProteinsMESH: Phenotype03 medical and health sciencesMESH: Gene Expression Profiling[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: Gene Expression Regulation PlantEcosystem030304 developmental biologyModels GeneticMicroarray analysis techniquesArabidopsis ProteinsGene Expression ProfilingResearchfungiRobustness (evolution)biology.organism_classificationMESH: Cluster AnalysisGene expression profilingMutationMESH: Oligonucleotide Array Sequence AnalysisStress Mechanical010606 plant biology & botany
researchProduct