Search results for "Genetically Modified"

showing 10 items of 345 documents

TORC1 Inhibition by Rapamycin Promotes Antioxidant Defences in a Drosophila Model of Friedreich’s Ataxia

2015

Friedreich's ataxia (FRDA), the most common inherited ataxia in the Caucasian population, is a multisystemic disease caused by a significant decrease in the frataxin level. To identify genes capable of modifying the severity of the symptoms of frataxin depletion, we performed a candidate genetic screen in a Drosophila RNAi-based model of FRDA. We found that genetic reduction in TOR Complex 1 (TORC1) signalling improves the impaired motor performance phenotype of FRDA model flies. Pharmacologic inhibition of TORC1 signalling by rapamycin also restored this phenotype and increased the lifespan and ATP levels. Furthermore, rapamycin reduced the altered levels of malondialdehyde + 4-hydroxyalke…

Malelcsh:MedicineGene Expressionmedicine.disease_causeAntioxidantsAnimals Genetically ModifiedAdenosine Triphosphate0302 clinical medicineRNA interferenceIron-Binding ProteinsMalondialdehydeDrosophila Proteinslcsh:ScienceAconitate HydrataseGenetics0303 health sciencesMultidisciplinaryReverse Transcriptase Polymerase Chain ReactionGlutathione3. Good healthCell biologyDrosophila melanogasterRNA Interferencemedicine.symptomImmunosuppressive AgentsDrosophila ProteinResearch ArticleAtaxiaLongevityMotor ActivityBiologyAconitase03 medical and health sciencesmedicineAnimalsHumans030304 developmental biologySirolimusAldehydesSuperoxide Dismutaselcsh:RAutophagyRepressor ProteinsDisease Models AnimalOxidative StressFriedreich AtaxiaFrataxinbiology.proteinlcsh:Q030217 neurology & neurosurgeryOxidative stressTranscription FactorsGenetic screenPLOS ONE
researchProduct

UNC-52/perlecan affects gonadal leader cell migrations in C. elegans hermaphrodites through alterations in growth factor signaling.

2003

0012-1606 doi: DOI: 10.1016/S0012-1606(03)00014-9; The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecu…

Malemedicine.medical_treatmentOrganogenesisCellDisorders of Sex DevelopmentReceptor-Like Protein Tyrosine PhosphatasesFibroblast growth factorAnimals Genetically ModifiedCell MovementNetrinGrowth SubstancesGenes HelminthGeneticsMusclesCell migrationsWnt signaling pathwayHelminth Proteinsmedicine.anatomical_structurePhenotypeLarvaC. elegansFemaleNetrinsProteoglycansSignal transductionSignal TransductionUNC-52Nerve Tissue ProteinsReceptors Cell SurfacePerlecanmacromolecular substancesBiologymedicineAnimalsCaenorhabditis elegansCaenorhabditis elegans ProteinsGonadsGeneMolecular BiologyGrowth factorfungiMembrane ProteinsCell BiologyPerlecanReceptors Fibroblast Growth Factornervous systemMutationbiology.proteinProtein Tyrosine PhosphatasesDevelopmental BiologyDevelopmental biology
researchProduct

Temporal coherency between receptor expression, neural activity and AP-1-dependent transcription regulates Drosophila motoneuron dendrite development.

2013

Neural activity has profound effects on the development of dendritic structure. Mechanisms that link neural activity to nuclear gene expression include activity-regulated factors, such as CREB, Crest or Mef2, as well as activity-regulated immediate-early genes, such as fos and jun. This study investigates the role of the transcriptional regulator AP-1, a Fos-Jun heterodimer, in activity-dependent dendritic structure development. We combine genetic manipulation, imaging and quantitative dendritic architecture analysis in a Drosophila single neuron model, the individually identified motoneuron MN5. First, Dα7 nicotinic acetylcholine receptors (nAChRs) and AP-1 are required for normal MN5 dend…

Mef2Transcriptional ActivationEmbryo NonmammalianTime FactorsTranscription GeneticReceptor expressionReceptors NicotinicCREBSynaptic TransmissionAnimals Genetically ModifiedGenes ReporterCa2+/calmodulin-dependent protein kinaseAnimalsDrosophila ProteinsCholinergic synapseCholinergic neuronMolecular BiologyResearch ArticlesCell NucleusDendritic spikeMicroscopy ConfocalbiologyGene Expression Regulation DevelopmentalDendritesImmunohistochemistryCholinergic NeuronsCell biologyEnzyme ActivationTranscription Factor AP-1Drosophila melanogasterMicroscopy Fluorescencebiology.proteinSignal transductionCalcium-Calmodulin-Dependent Protein Kinase Type 2Developmental BiologySignal TransductionDevelopment (Cambridge, England)
researchProduct

Molecular architecture and activation of the insecticidal protein Vip3Aa from Bacillus thuringiensis

2020

9 p.-5 fig.

Models Molecular0301 basic medicineProteasesBiologiaMolecular biologymedicine.medical_treatmentScienceAmino Acid MotifsBacillus thuringiensisGeneral Physics and Astronomy02 engineering and technologyGenetically modified cropsBiotecnologiaArticleProtein Structure SecondaryGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciencesBacterial ProteinsProtein DomainsTetramerBacillus thuringiensisElectron microscopymedicineTrypsinlcsh:ScienceMultidisciplinaryProteasebiologyChemistryQfungifood and beveragesMidgutGeneral Chemistry021001 nanoscience & nanotechnologybiology.organism_classification030104 developmental biologyStructural biologyBiochemistrylcsh:QStructural biology0210 nano-technologyProteïnesFunction (biology)
researchProduct

The phosphorylated pathway of serine biosynthesis is essential both for male gametophyte and embryo development and for root growth in Arabidopsis.

2013

This study characterizes the phosphorylated pathway of Ser biosynthesis (PPSB) in Arabidopsis thaliana by targeting phosphoserine phosphatase (PSP1), the last enzyme of the pathway. Lack of PSP1 activity delayed embryo development, leading to aborted embryos that could be classified as early curled cotyledons. The embryo-lethal phenotype of psp1 mutants could be complemented with PSP1 cDNA under the control of Pro35S (Pro35S:PSP1). However, this construct, which was poorly expressed in the anther tapetum, did not complement mutant fertility. Microspore development in psp1.1/psp1.1 Pro35S:PSP1 arrested at the polarized stage. The tapetum from these lines displayed delayed and irregular devel…

MutantCitric Acid CycleGreen Fluorescent ProteinsImmunoblottingArabidopsisPlant ScienceBiologyPlant RootsSerineMicrosporeMicroscopy Electron TransmissionGene Expression Regulation PlantArabidopsisSerineArabidopsis thalianaAmino AcidsPhosphorylationResearch ArticlesTapetumArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGene Expression Regulation DevelopmentalEmbryoPhosphoserine phosphataseCell Biologybiology.organism_classificationPlants Genetically ModifiedPhosphoric Monoester HydrolasesBiosynthetic PathwaysBiochemistryMicroscopy FluorescenceMutationSeedsPollenGlycolysisThe Plant cell
researchProduct

Variability in the cadherin gene in an Ostrinia nubilalis strain selected for Cry1Ab resistance

2008

Transgenic corn expressing Cry1Ab (a Bacillus thuringiensis toxin) is highly effective in the control of Ostrinia nubilalis. For its toxic action, Cry1Ab has to bind to specific insect midgut proteins. To date, in three Lepidoptera species resistance to a Cry1A toxin has been conferred by mutations in cadherin, a protein of the Lepidoptera midgut membrane. The implication of cadherin in the resistance of an Ostrinia nubilalis colony (Europe-R) selected with Bacillus thuringiensis Cry1Ab protoxin was investigated. Several major mutations in the cadherin (cdh) gene were found, which introduced premature termination codons and/or large deletions (ranging from 1383 to 1701bp). The contribution …

MutantDrug ResistanceGenetically modified cropsMothsBiologyBiochemistryOstriniaHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyGenetic variationAnimalsMolecular BiologyGeneGeneticsPolymorphism GeneticBacillus thuringiensis ToxinsCadherinfungiGenetic Variationfood and beveragesMidgutCadherinsbiology.organism_classificationEndotoxinsInsect ScienceMutationInsect ProteinsInsect Biochemistry and Molecular Biology
researchProduct

MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish.

2008

The inv(8)(p11q13) chromosomal abnormality, described in acute myeloid leukaemias (AML), fuses the histone acetyl-transferase (HAT) MYST3 (MOZ) gene with another HAT gene, NCOA2 (TIF2). We generated a transgenic zebrafish in which the MYST3/NCOA2 fusion gene was expressed under control of the spi1 promoter. An AML developed in 2 of 180 MYST3/NCOA2-EGFP-expressing embryos, 14 and 26 months after injection of the fusion gene in a one-cell embryo, respectively. This leukaemia was characterised by an extensive invasion of kidneys by myeloid blast cells. This model, which is the first zebrafish model of AML, demonstrates the oncogenic potency of MYST3/NCOA2 fusion gene.

MyeloidMicroinjectionsOncogene Proteins FusionTransgeneBiologyKidneyMYST3Fusion geneAnimals Genetically ModifiedNuclear Receptor Coactivator 2hemic and lymphatic diseasesmedicineAnimalsZebrafishGeneZebrafishHistone AcetyltransferasesSPI1Reverse Transcriptase Polymerase Chain ReactionHematologymedicine.diseasebiology.organism_classificationMolecular biologyLeukemiaDisease Models AnimalLeukemia Myeloid Acutemedicine.anatomical_structureembryonic structuresCancer researchGene FusionBritish journal of haematology
researchProduct

Sensing life: regulation of sensory neuron survival by neurotrophins

2002

Neurotrophins are a family of structurally and functionally related neurotrophic factors which, in mammals, include: nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 (NT-3), and NT-4/5. In addition to their canonical role in promoting neuronal survival, these molecules appear to regulate multiple aspects of the development of the nervous system in vertebrates, including neuronal differentiation, axon elongation and target innervation, among others. Actions of neurotrophins and of their receptors in vivo are being analyzed by loss-of-function or gain-of-function experiments in mice. Here, we review the phenotypes of the primary sensory system in these mutant mouse strai…

Nervous systemGenetically modified mouseCell SurvivalMice TransgenicSensory systemReceptors Nerve Growth FactorMiceCellular and Molecular NeuroscienceNeurotrophic factorsmedicineAnimalsReceptor trkCNerve Growth FactorsNeurons AfferentAxonMolecular BiologyMice KnockoutPharmacologyMembrane GlycoproteinsbiologyBrain-Derived Neurotrophic FactorCell BiologyAnatomyProtein-Tyrosine KinasesSensory neuronmedicine.anatomical_structureNerve growth factornervous systembiology.proteinMolecular MedicineNeuroscienceSignal TransductionNeurotrophinCellular and Molecular Life Sciences
researchProduct

Dscam1 Is Required for Normal Dendrite Growth and Branching But Not for Dendritic Spacing in Drosophila Motoneurons

2014

Down syndrome cell adhesion molecule, Dscam, serves diverse neurodevelopmental functions, including axon guidance and synaptic adhesion, as well as self-recognition and self-avoidance, depending on the neuron type, brain region, or species under investigation. InDrosophila, the extensive molecular diversity that results from alternative splicing of Dscam1 into >38,000 isoforms provides neurons with a unique molecular code for self-recognition in the nervous system. Each neuron produces only a small subset of Dscam1 isoforms, and distinct Dscam1 isoforms mediate homophilic interactions, which in turn, result in repulsion and even spacing of self-processes, while allowing contact with neig…

Nervous systemGreen Fluorescent ProteinsMuscle Fibers SkeletalBiologyAnimals Genetically ModifiedDSCAMDendrite (crystal)medicineAnimalsDrosophila ProteinsProtein IsoformsMotor NeuronsAnalysis of VarianceGeneral NeuroscienceMARCMfungiGene Expression Regulation DevelopmentalArticlesDendritesAlternative Splicingmedicine.anatomical_structurenervous systemMushroom bodiesAxon guidanceDrosophilaRNA InterferenceNeuronNeuroscienceCell Adhesion MoleculesDrosophila Protein
researchProduct

Are dendrites in Drosophila homologous to vertebrate dendrites?

2005

AbstractDendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display c…

NeuriteCompartmentalisationDendriteDendriteAnimals Genetically ModifiedMicePostsynaptic potentialbiology.animalmedicineAnimalsUrbilaterianMolecular BiologyMosaic analysisCytoskeletonCells CulturedMotor NeuronsDendritic spikeTransmitter receptorsbiologyVertebrateCell PolarityCell DifferentiationCell BiologyAnatomyDendritesbiology.organism_classificationBiological EvolutionCell biologyRatsmedicine.anatomical_structureDrosophila melanogasterDrosophilaSomaCalciumRabbitsCellular modelDevelopmental BiologyDevelopmental biology
researchProduct