Search results for "Genetically Modified"

showing 10 items of 345 documents

O-glycosylation of the tail domain of neurofilament protein M in human neurons and in spinal cord tissue of a rat model of amyotrophic lateral sclero…

2005

Mammalian neurofilaments (NFs) are modified by post-translational modifications that are thought to regulate NF assembly and organization. Whereas phosphorylation has been intensely studied, the role of another common modification, the attachment of O-linked N-acetylglucosamine (GlcNAc) to individual serine and threonine residues, is hardly understood. We generated a novel monoclonal antibody that specifically recognizes an O-glycosylated epitope in the tail domain of NF-M and allows determination of the glycosylation state at this residue. The antibody displays strong species preference for human NF-M, shows some reactivity with rat but not with mouse or bovine NF-M. By immunohistochemistr…

NeurofilamentGlycosylationGlycosylationMolecular Sequence DataHyperphosphorylationBiologyMitogen-activated protein kinase kinaseBiochemistryAnimals Genetically Modifiedchemistry.chemical_compoundEpitopesMiceWestern blotNeurofilament ProteinsCell Line TumorAcetylglucosaminidasemedicineAnimalsHumansAmino Acid SequenceProtein kinase AMolecular BiologyMitogen-Activated Protein Kinase KinasesNeuronsmedicine.diagnostic_testKinaseAmyotrophic Lateral SclerosisAntibodies MonoclonalCell BiologyAxonsCell biologyProtein Structure TertiaryRatsDisease Models AnimalchemistryBiochemistrySpinal CordNIH 3T3 CellsPhosphorylationCattleThe Journal of biological chemistry
researchProduct

The

2016

ABSTRACT Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier …

NotchGenotypeCardiomyopathyGenes InsectAnimals Genetically ModifiedAnimalsDrosophila ProteinsAllelesMammalsNeuronsHuntingtin ProteinReceptors NotchMusclesMyocardiumMembrane ProteinsReproducibility of ResultsDrosHuntington's diseaseDisease Models AnimalDrosophila melanogasterPhenotypeGene Knockdown TechniquesMutationNerve DegenerationPhotoreceptor Cells InvertebrateRNA InterferenceJunctophilinDrosophilaTrinucleotide Repeat ExpansionSignal TransductionResearch ArticleDisease modelsmechanisms
researchProduct

Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis

2006

Lignin is a major determinant of the decomposition of plant materials in soils. Advances in transgenic technology have led to the possibility of modifying lignin to improve the pulping properties of plant materials for papermaking. Previous studies have shown that lignin modifications also affect the rate of plant material decay in soil. The aim of this work was to investigate short-term changes in soil microbial community structures when tobacco residues with reduced activity of enzymes in the monolignol pathway decompose. The residues from lignin-modified plants all decomposed faster than unmodified plant materials. The relative proportions of some of the structural groups of microbial ph…

PaperNitrogenAlcohol oxidoreductaseLignincomplex mixturesMicrobiologysoilchemistry.chemical_compoundTobaccoBotanyGeneticsgenetic modificationLigninMolecular BiologySoil MicrobiologydecompositionBacteriaPlant StemsbiologyfungiFungifood and beveragesMethyltransferasesPlants Genetically Modifiedbiology.organism_classificationDecompositionCarbonAlcohol Oxidoreductases[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyMicrobial population biologychemistrymicrobial community structureSoil waterMonolignolSoil microbiologyBacteriaFEMS Microbiology Letters
researchProduct

Biochemistry and genetics of insect resistance to Bacillus thuringiensis.

2001

▪ Abstract  Bacillus thuringiensis (Bt) is a valuable source of insecticidal proteins for use in conventional sprayable formulations and in transgenic crops, and it is the most promising alternative to synthetic insecticides. However, evolution of resistance in insect populations is a serious threat to this technology. So far, only one insect species has evolved significant levels of resistance in the field, but laboratory selection experiments have shown the high potential of other species to evolve resistance against Bt. We have reviewed the current knowledge on the biochemical mechanisms and genetics of resistance to Bt products and insecticidal crystal proteins. The understanding of th…

Pesticide resistanceInsectamedia_common.quotation_subjectBacillus thuringiensisInsectGenetically modified cropsBiologyInsecticide ResistanceBacillus thuringiensisAnimalsInsecticidal crystal proteinsPest Control BiologicalEcology Evolution Behavior and Systematicsmedia_commonGeneticsResistance (ecology)business.industryDipterafungiPest controlbiology.organism_classificationBiotechnologyColeopteraLepidopteraCry1AcInsect SciencebusinessAnnual review of entomology
researchProduct

Survival of two strains of Phthorimaea operculella (Lepidoptera: Gelechiidae) reared on transgenic potatoes expressing a Bacillus thuringiensis cryst…

1998

[Otros] Survie de deux souches de Phthorimaea operculella (Lepidoptera : Gelechiidae) élevées sur des pommes de terre transgéniques exprimant la protéine CrylAb de Bacillus thuringiensis. Deux populations de Phthorimaea operculella (Zeller), l'une supposée résistante au DipelTM (une préparation commerciale de delta-endotoxines de Bacillus thuringiensis) et l'autre sensible, ont été cultivées sur quatre cultivars de pomme de terre, deux transgéniques de première génération, exprimant la protéine CrylAb de Bacillus thuringiensis, et deux non transformés. La population de papillons considérée comme résistante a présenté une mortalité inférieure à celle de l'autre population, mais n'était pas v…

Pesticide resistancePopulationBacillus thuringiensisGenetically modified cropsLepidoptera genitaliaBacillus thuringiensisBotanyCry1AbeducationComputingMilieux_MISCELLANEOUSTransgenic potatoes[SDV.SA] Life Sciences [q-bio]/Agricultural scienceseducation.field_of_studybiologyfungifood and beveragesbiology.organism_classificationGelechiidaePommes de terre transgéniquesPthorimaea operculellaPhthorimaea operculella[SDV.EE] Life Sciences [q-bio]/Ecology environmentHorticultureAgronomy and Crop ScienceSolanaceaeAgronomie
researchProduct

Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling

2013

[EN] Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis, and oxidative stress protection. In many eukaryotic organisms, including yeast (Saccharomyces cerevisiae) and mammals, copper and iron homeostases are highly interconnected; yet, such interdependence is not well established in higher plants. Here, we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis (Arabidopsis thaliana). COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expr…

PhysiologyArabidopsisPlant SciencePlant RootsMembranes Transport and BioenergeticsGene Expression Regulation PlantArabidopsisThalianaHomeostasisArabidopsis thalianaSLC31 ProteinsGene-expressionCation Transport ProteinsChlorosisbiologyRevealsIron DeficienciesMetal homeostasisPlantsPlants Genetically ModifiedUp-RegulationTransport proteinPhenotypeBiochemistrySignal TransductionIronRecombinant Fusion ProteinsSaccharomyces cerevisiaechemistry.chemical_elementSaccharomyces cerevisiaeModels BiologicalPhosphatesEthyleneGeneticsmedicineBIOQUIMICA Y BIOLOGIA MOLECULARFamilyIron deficiency (plant disorder)Arabidopsis ProteinsBiological TransportRoot elongationSequence Analysis DNAbiology.organism_classificationmedicine.diseaseCopperPlant LeavesAcquisitionchemistrySeedlingsStarvationMutationCopper deficiencyCopper
researchProduct

Paratransgenic manipulation of a tsetse microRNA alters the physiological homeostasis of the fly’s midgut environment

2021

Tsetse flies are vectors of parasitic African trypanosomes, the etiological agents of human and animal African trypanosomoses. Current disease control methods include fly-repelling pesticides, fly trapping, and chemotherapeutic treatment of infected people and animals. Inhibiting tsetse’s ability to transmit trypanosomes by strengthening the fly’s natural barriers can serve as an alternative approach to reduce disease. The peritrophic matrix (PM) is a chitinous and proteinaceous barrier that lines the insect midgut and serves as a protective barrier that inhibits infection with pathogens. African trypanosomes must cross tsetse’s PM in order to establish an infection in the fly, and PM struc…

PhysiologyGenes InsectBiochemistryAnimals Genetically ModifiedMedical ConditionsGene expressionMedicine and Health SciencesHomeostasisPeritrophic matrixBiology (General)Protozoans0303 health sciencesbiologyGene OntologiesSodalis glossinidiusEukaryotaCardiaGenomicsBody FluidsCell biologyIntestinesNucleic acidsBloodDigestionAnatomyResearch ArticleSymbiotic bacteriaTrypanosomaTsetse FliesQH301-705.5ImmunologyParatransgenesisMicrobiology03 medical and health sciencesVirologyParasitic DiseasesGeneticsAnimalsNon-coding RNAMolecular Biology030304 developmental biologyNatural antisense transcripts030306 microbiologyfungiOrganismsBiology and Life SciencesComputational BiologyTsetse flyMidgutRC581-607Genome Analysisbiology.organism_classificationParasitic ProtozoansGastrointestinal MicrobiomeInsect VectorsGene regulationGastrointestinal TractMicroRNAsTrypanosomiasis AfricanTrypanosomaRNAParasitologyGene expressionImmunologic diseases. AllergyPhysiological ProcessesDigestive SystemPLOS Pathogens
researchProduct

The Arabidopsis COPT6 Transport Protein Functions in Copper Distribution Under Copper-Deficient Conditions

2013

Copper (Cu), an essential redox active cofactor, participates in fundamental biological processes, but it becomes highly cytotoxic when present in excess. Therefore, living organisms have established suitable mechanisms to balance cellular and systemic Cu levels. An important strategy to maintain Cu homeostasis consists of regulating uptake and mobilization via the conserved family of CTR/COPT Cu transport proteins. In the model plant Arabidopsis thaliana, COPT1 protein mediates root Cu acquisition, whereas COPT5 protein functions in Cu mobilization from intracellular storage organelles. The function of these transporters becomes critical when environmental Cu bioavailability diminishes. Ho…

PhysiologyMolecular Sequence DataSaccharomyces cerevisiaeMutantArabidopsisSaccharomyces cerevisiaePlant SciencePlant RootsCofactorCell membraneGene Expression Regulation PlantArabidopsisOrganellemedicineHomeostasisAmino Acid SequenceSLC31 ProteinsbiologyArabidopsis ProteinsMembrane transport proteinCell MembraneGenetic Complementation TestMembrane Transport ProteinsBiological TransportCell BiologyGeneral MedicinePlants Genetically Modifiedbiology.organism_classificationUp-RegulationTransport proteinCell biologyPlant LeavesMutagenesis Insertionalmedicine.anatomical_structureBiochemistrySeedsbiology.proteinPlant Vascular BundleSequence AlignmentCopperPlant ShootsPlant and Cell Physiology
researchProduct

Functional characterization of the plastidial 3-phosphoglycerate dehydrogenase family in Arabidopsis.

2013

This work contributes to unraveling the role of the phosphorylated pathway of serine (Ser) biosynthesis in Arabidopsis (Arabidopsis thaliana) by functionally characterizing genes coding for the first enzyme of this pathway, 3-phosphoglycerate dehydrogenase (PGDH). We identified two Arabidopsis plastid-localized PGDH genes (3-PGDH and EMBRYO SAC DEVELOPMENT ARREST9 [EDA9]) with a high percentage of amino acid identity with a previously identified PGDH. All three genes displayed a different expression pattern indicating that they are not functionally redundant. pgdh and 3-pgdh mutants presented no drastic visual phenotypes, but eda9 displayed delayed embryo development, leading to aborted emb…

PhysiologyMutantMolecular Sequence DataArabidopsisPlant SciencePlant RootsGene Expression Regulation EnzymologicSerineBiochemistry and MetabolismGene Expression Regulation PlantComplementary DNAArabidopsisGeneticsSerineArabidopsis thalianaMetabolomicsAmino Acid SequencePlastidsPhosphorylationGenePhosphoglycerate DehydrogenasePhylogenyTapetumMicroscopy ConfocalbiologySequence Homology Amino AcidArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGenetic Complementation Testfood and beveragesPlant Components Aerialbiology.organism_classificationPlants Genetically ModifiedPhenotypeIsoenzymesBiochemistryMultigene FamilyMutationSeedsPollenPlant physiology
researchProduct

Pollen-stigma adhesion in Brassica spp involves SLG and SLR1 glycoproteins.

1999

The adhesion of pollen grains to the stigma is the first step of pollination in flowering plants. During this step, stigmas discriminate between pollen grains that can and cannot be permitted to effect fertilization. This selection is operated by various constituents of the cell walls of both partners. Several genes structurally related to the self-incompatibility system that prevents self-pollination in Brassica spp are known to target their products into the stigma cell wall. We proposed previously that one of these genes, the one encoding the S locus glycoprotein (SLG)-like receptor 1 (SLR1), which is coexpressed with that encoding SLG, may participate in pollen-stigma adhesion. Here, we…

PollinationPlant ScienceBrassicaBiologymedicine.disease_causeAntibodiesCell wallPollenmedicineCell AdhesionPollen adhesionCell adhesionMicroscopy ImmunoelectronGeneGlycoproteinsPlant Proteinschemistry.chemical_classificationGeneticsfood and beveragesCell BiologyOligonucleotides AntisensePlants Genetically ModifiedPollen hydrationCell biologychemistryMicroscopy Electron ScanningPollenIsoelectric FocusingGlycoproteinResearch ArticleThe Plant cell
researchProduct