Search results for "Glycosylation"

showing 10 items of 190 documents

Acceptor Specificity of Amylosucrase from Deinococcus radiopugnans and Its Application for Synthesis of Rutin Derivatives

2016

The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold hig…

0106 biological sciences0301 basic medicineGlycosylationGlycosylationStereochemistryRutinAmino Acid Motifs01 natural sciencesApplied Microbiology and BiotechnologySubstrate Specificity03 medical and health sciencesRutinchemistry.chemical_compoundAmylosucraseGlucosyltransferasesBacterial Proteins010608 biotechnologyDeinococcusBinding siteBinding SitesbiologyGeneral Medicinebiology.organism_classificationAcceptorMolecular Docking SimulationKinetics030104 developmental biologyAglyconechemistryGlucosyltransferasesbiology.proteinDeinococcusBiotechnologyJournal of Microbiology and Biotechnology
researchProduct

GIPC: Glycosyl Inositol Phospho Ceramides, the major sphingolipids on earth

2016

What are the most abundant sphingolipids on earth? The answer is Glycosyl Inositol Phosphoryl Ceramides (GIPCs) present in fungi and the green lineage. In this review, we discuss the putative role of plant GIPCs in the lipid bilayer asymmetry, in the lateral organization of membrane rafts and in the very long chain fatty acid inter-leaflet coupling of lipids in the plant plasma membrane (PM). A special focus on the structural similarities -and putative functions- of GIPCs is discussed by comparison with animal gangliosides, structural homologs of plant GIPCs.

0106 biological sciences0301 basic medicineGlycosylationGlycosylationVery long chain fatty acidPlant ScienceBiologyCeramidesModels Biological01 natural sciencesCell wall03 medical and health scienceschemistry.chemical_compoundMembrane MicrodomainsPlant defense against herbivoryAnimalsGlycosylInositolLipid bilayerSphingolipidsMini-ReviewPlantsSphingolipid030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlant Signaling & Behavior
researchProduct

Changes in lipid composition in tobacco cells treated with cryptogein , an elicitor from Phytophthora cryptogea

1995

Abstract Changes in lipid composition occurred when tobacco cells (Nicotiana tabacum var. Xanthi) were treated with cryptogein, a proteinaceous elicitor from Phytophthora cryptogea. The most striking change was an increase in acylated steryl glycosides and steryl esters levels, certainly resulting from the glycosylation and/or esterification of free sterols. Moreover, in vivo pulse-labelling experiments with [14C]acetate also showed that a progressive decline in the incorporation rate of [14C]acetate into free sterols started with the induction of sesquiterpenoid synthesis and lasted when sesquiterpenoid synthesis stops. This phenomenon was accompanied by a significant increase in the synth…

0106 biological sciencesGlycosylationNicotiana tabacumPlant Science01 natural sciences[SDV.GEN.GPL]Life Sciences [q-bio]/Genetics/Plants genetics03 medical and health scienceschemistry.chemical_compoundBiosynthesis[SDV.GEN.GPL] Life Sciences [q-bio]/Genetics/Plants geneticsGeneticsComputingMilieux_MISCELLANEOUS030304 developmental biologychemistry.chemical_classificationPhosphatidylethanolamine0303 health sciencesbiologyPhytophthora cryptogeaPhytoalexinGlycosideGeneral Medicinebiology.organism_classification3. Good healthElicitorchemistryBiochemistrylipids (amino acids peptides and proteins)Agronomy and Crop Science010606 plant biology & botany
researchProduct

Genetics of Wilson disease and Wilson-like phenotype in a clinical series from eastern Spain.

2019

Wilson's disease (WD) is an autosomal recessive disorder caused by ATP7B mutations. Subjects with only one mutation may show clinical signs and individuals with biallelic changes may remain asymptomatic. We aimed to achieve a conclusive genetic diagnosis for 34 patients clinically diagnosed of WD. Genetic analysis comprised from analysis of exons to WES (whole exome sequencing), including promoter, introns, UTRs (untranslated regions), besides of study of large deletions/duplications by MLPA (multiplex ligation-dependent probe amplification). Biallelic ATP7B mutations were identified in 30 patients, so that four patients were analyzed using WES. Two affected siblings resulted to be compound…

0301 basic medicineAdultMaleNerve Tissue Proteins030105 genetics & heredityBiologymedicine.disease_causeCompound heterozygosityGenetic analysis03 medical and health sciencesExonHepatolenticular DegenerationExome SequencingGeneticsmedicineHumansGenetic Predisposition to DiseaseMultiplex ligation-dependent probe amplificationGenetic TestingGenetics (clinical)Exome sequencingGeneticsMutationExonsmedicine.diseaseWilson's disease030104 developmental biologyPhenotypeCopper-Transporting ATPasesSpainMutationFemaleCongenital disorder of glycosylationClinical geneticsREFERENCES
researchProduct

Human Achilles tendon glycation and function in diabetes

2016

Diabetic patients have an increased risk of foot ulcers, and glycation of collagen may increase tissue stiffness. We hypothesized that the level of glycemic control (glycation) may affect Achilles tendon stiffness, which can influence gait pattern. We therefore investigated the relationship between collagen glycation, Achilles tendon stiffness parameters, and plantar pressure in poorly ( n = 22) and well ( n = 22) controlled diabetic patients, including healthy age-matched (45–70 yr) controls ( n = 11). There were no differences in any of the outcome parameters (collagen cross-linking or tendon stiffness) between patients with well-controlled and poorly controlled diabetes. The overall effe…

0301 basic medicineBlood GlucoseMaleGlycosylationPhysiologyFoot/physiologyDiabetes Mellitus/physiopathologychemistry.chemical_compound0302 clinical medicineGlycationta315GaitAchilles tendondiabetesBiomechanical Phenomena/physiologyta3141ta3142Middle Agedenzymatic and non-enzymatic collagen cross-linkingAchilles Tendon/physiopathologymusculoskeletal systemTendonBiomechanical Phenomenamedicine.anatomical_structureGait/physiologymusculoskeletal diseasesmedicine.medical_specialtyUrologyConnective tissue030209 endocrinology & metabolismta3111Achilles TendonGlycemic Index/physiology03 medical and health sciencesPhysiology (medical)Diabetes mellitusJoint capsulemedicineDiabetes MellitusHumansPentosidinebusiness.industryFootForefootmedicine.diseasefoot ulcerSurgerybody regionsBlood Glucose/physiology030104 developmental biologyCross-Sectional StudieschemistryGlycemic IndexAchilles tendon mechanicsEnzymatic and nonenzymatic collagen cross-linkingbusiness
researchProduct

Human milk and mucosal lacto- and galacto-N-biose synthesis by transgalactosylation and their prebiotic potential in Lactobacillus species.

2017

Lacto-N-biose (LNB) and galacto-N-biose (GNB) are major building blocks of free oligosaccharides and glycan moieties of glyco-complexes present in human milk and gastrointestinal mucosa. We have previously characterized the phospho-β-galactosidase GnbG from Lactobacillus casei BL23 that is involved in the metabolism of LNB and GNB. GnbG has been used here in transglycosylation reactions, and it showed the production of LNB and GNB with N-acetylglucosamine and N-acetylgalactosamine as acceptors, respectively. The reaction kinetics demonstrated that GnbG can convert 69 ± 4 and 71 ± 1 % of o-nitrophenyl-β-d-galactopyranoside into LNB and GNB, respectively. Those reactions were performed in a s…

0301 basic medicineGlycanLactobacillus caseiTransglycosylationAcetylgalactosamineGlycosylationMagnetic Resonance SpectroscopyGlycoside Hydrolasesmedicine.medical_treatment030106 microbiologyMicrobiologiaPrebioticBiologyLactobacillus gasseriDisaccharidesApplied Microbiology and BiotechnologyMicrobiologyAcetylglucosamine03 medical and health sciencesLactobacillus rhamnosusmedicineIntestinal MucosaGalacto-N-bioseLactobacillus johnsoniiMilk HumanPrebioticHuman milk oligosaccharidesfood and beveragesNucleic Acid HybridizationGeneral MedicineMetabolismbiology.organism_classificationLactobacilsKineticsLactobacillus030104 developmental biologyPrebioticsBiochemistrybiology.proteinFermentationLacto-N-bioseBiotechnologyApplied microbiology and biotechnology
researchProduct

N-Linked Glycosylation of the p24 Family Protein p24δ5 Modulates Retrograde Golgi-to-ER Transport of K/HDEL Ligands in Arabidopsis

2017

Abstract The K/HDEL receptor ERD2 mediates the transport of soluble endoplasmic reticulum (ER)-resident proteins containing a C-terminal K/HDEL signal from the Golgi apparatus back to the ER via COPI (COat Protein I)-coated vesicles. Sorting of ERD2 within COPI vesicles is facilitated by p24 proteins. In Arabidopsis , p24δ5 has been shown to interact directly with ERD2 via its luminal GOLD (GOLgi Dynamics) domain and with COPI proteins via its cytoplasmic C-terminal tail at the acidic pH of the Golgi apparatus. Several members of the p24 family in mammals and yeast have been shown to be glycosylated, but whether Arabidopsis p24 proteins are glycosylated and the role of the sugar moiety in p…

0301 basic medicineGlycosylationArabidopsisGolgi ApparatusPlant ScienceBiologyEndoplasmic ReticulumBiotecnologia03 medical and health sciencessymbols.namesakeN-linked glycosylationArabidopsisMolecular BiologyCOPIIArabidopsis ProteinsVesicleEndoplasmic reticulumCOPIGolgi apparatusbiology.organism_classificationCell biology030104 developmental biologyCytoplasmsymbolsProteïnes
researchProduct

Synthetic MUC1 Antitumor Vaccine with Incorporated 2,3-Sialyl-T Carbohydrate Antigen Inducing Strong Immune Responses with Isotype Specificity

2018

The endothelial glycoprotein MUC1 is known to underlie alterations in cancer by means of aberrant glycosylation accompanied by changes in morphology. The heavily shortened glycans induce a collapse of the peptide backbone and enable accessibility of the latter to immune cells, rendering it a tumor-associated antigen. Synthetic vaccines based on MUC1 tandem repeat motifs, comprising tumor-associated 2,3-sialyl-T antigen, conjugated to the immunostimulating tetanus toxoid, are reported herein. Immunization with these vaccines in a simple water/oil emulsion produced a strong immune response in mice to which stimulation with complete Freund's adjuvant (CFA) was not superior. In both cases, high…

0301 basic medicineGlycosylationChemistrymedicine.medical_treatmentOrganic ChemistryToxoid010402 general chemistry01 natural sciencesBiochemistryIsotypeMolecular biology0104 chemical sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyImmune systemAntigenPeptide vaccinemedicineMolecular MedicineMolecular BiologyAdjuvantMUC1ChemBioChem
researchProduct

GH57 amylopullulanase from Desulfurococcus amylolyticus JCM 9188 can make highly branched cyclodextrin via its transglycosylation activity.

2018

Abstract Desulfurococcus amylolyticus is an anaerobic and hyperthermophilic crenarchaeon that can use various carbohydrates as energy sources. We found a gene encoding a glycoside hydrolase family 57 amylolytic enzymes (DApu) in a putative carbohydrate utilization gene cluster in the genome of D. amylolyticus . This gene has an open reading frame of 1,878 bp and consists of 626 amino acids with a molecular mass of 71 kDa. Recombinant DApu (rDApu) completely hydrolyzed pullulan to maltotriose by attacking α-1,6-glycosidic linkages, and was able to produce glucose and maltose from soluble starch and amylopectin. Although rDApu showed no activity toward α-cyclodextrin (CD) and β-CD, maltooctao…

0301 basic medicineGlycosylationGlycoside HydrolasesArchaeal ProteinsBioengineeringApplied Microbiology and BiotechnologyBiochemistrySubstrate Specificity03 medical and health scienceschemistry.chemical_compoundHydrolysisOpen Reading FramesGene clusterEnzyme StabilityMaltotrioseGlycoside hydrolaseCloning MolecularMaltoseGlucansCyclodextrins030102 biochemistry & molecular biologyDesulfurococcaceaePullulanMaltoseMolecular Weight030104 developmental biologychemistryBiochemistryAmylopectinEnergy sourceTrisaccharidesBiotechnologyEnzyme and microbial technology
researchProduct

TheGCA1gene encodes a glycosidase-like protein in the cell wall ofCandida albicans

2016

Candida albicans Gca1p is a putative glucoamylase enzyme which contains 946 amino acids, 11 putative sites for N -glycosylation and 9 for O -glycosylation. Gca1p was identified in β-mercaptoethanol extracts from isolated cell walls of strain C. albicans SC5314 and it is involved in carbohydrate metabolism. The significance and the role of this protein within the cell wall structure were studied in the corresponding mutants. The homozygous mutant showed that GCA1 was not an essential gene for cell viability. Subsequent phenotypic analysis performed in the mutants obtained did not show significant difference in the behavior of mutant when compared with the wild strain SC5314. Zymoliase, Calco…

0301 basic medicineGlycosylationGlycoside HydrolasesGenes Fungal030106 microbiologyMutantCalcofluor-whiteApplied Microbiology and BiotechnologyMicrobiologyCell wallGene Knockout Techniques03 medical and health scienceschemistry.chemical_compoundGlucosidesCell WallCandida albicansCandida albicanschemistry.chemical_classificationMicrobial ViabilitybiologyGeneral Medicinebiology.organism_classificationMolecular biologyEnzyme assayCorpus albicansEnzymechemistryBiochemistrybiology.proteinFEMS Yeast Research
researchProduct