Search results for "Graphe"

showing 10 items of 563 documents

Nanostructured lead-acid negative electrode with reduced graphene oxide

2021

Aim of this work is to develop a new nano-structured and nano-composite lead acid negative electrode with reduced graphene oxide (rGO). Nanostructured electrodes are fabricated by template electrodeposition of lead nanowires on a lead current collector. A polycarbonate track-etched membrane was used as a template (200 nm mean pores diameter). rGO was deposited on the nanostructured electrode from a graphene oxide (GO) dispersion in acetate buffer solution (ABS) (0.2 g/L). Potentiostatic deposition of rGO at -0.8 V vs. standard calomel electrode (SCE) was performed. Electrode with rGO was tested as negative electrode in cell with 5M sulfuric acid solution, a commercial pasted positive plate,…

Lead-acid batteriesNegative electrodeReduced graphene-oxideSettore ING-IND/23 - Chimica Fisica ApplicataHigh C-rateTemplate electrodepositionNanostructures
researchProduct

Independent Geometrical Control of Spin and Charge Resistances in Curved Spintronics

2019

Spintronic devices operating with pure spin currents represent a new paradigm in nanoelectronics, with higher energy efficiency and lower dissipation as compared to charge currents. This technology, however, will be viable only if the amount of spin current diffusing in a nanochannel can be tuned on demand while guaranteeing electrical compatibility with other device elements, to which it should be integrated in high-density three-dimensional architectures. Here, we address these two crucial milestones and demonstrate that pure spin currents can effectively propagate in metallic nanochannels with a three-dimensional curved geometry. Remarkably, the geometric design of the nanochannels can b…

LetterChemistry(all)geometrical controlFOS: Physical sciencesBioengineeringRELAXATIONApplied Physics (physics.app-ph)02 engineering and technologySpin current7. Clean energyelectrical and spin resistanceMaterials Science(all)National Graphene InstituteOn demandMesoscale and Nanoscale Physics (cond-mat.mes-hall)LOGICGeneral Materials ScienceElectronicsPhysicsspintronicsCondensed Matter - Mesoscale and Nanoscale PhysicsSpintronicsbusiness.industryMechanical EngineeringMEMORYnon-local spin valvesPhysics - Applied PhysicsGeneral ChemistrySpintronicsDissipation021001 nanoscience & nanotechnologyCondensed Matter PhysicsTRANSPORTROOM-TEMPERATURENanoelectronicsnonlocal spin valvesMETALResearchInstitutes_Networks_Beacons/national_graphene_institutecurved nanoarchitectures; electrical and spin resistance; geometrical control; nonlocal spin valves; SpintronicsOptoelectronicscurved nanoarchitecturesINJECTION0210 nano-technologybusinessEfficient energy useNano Letters
researchProduct

Chemisorption of Atomically Precise 42-Carbon Graphene Quantum Dots on Metal Oxide Films Greatly Accelerates Interfacial Electron Transfer

2019

Graphene quantum dots (GQDs) are emerging as environmentally friendly, low-cost, and highly tunable building blocks in solar energy conversion architectures, such as solar (fuel) cells. Specifically, GQDs constitute a promising alternative for organometallic dyes in sensitized oxide systems. Current sensitized solar cells employing atomically precise GQDs are based on physisorbed sensitizers, with typically limited efficiencies. Chemisorption has been pointed out as a solution to boost photoconversion efficiencies, by allowing improved control over sensitizer surface coverage and sensitizer-oxide coupling strength. Here, employing time-resolved THz spectroscopy, we demonstrate that chemisor…

LetterMaterials scienceGrapheneOxidechemistry.chemical_elementNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundElectron transferchemistryQuantum dotlawChemisorptionSurface modificationGeneral Materials SciencePhysical and Theoretical Chemistry0210 nano-technologyMesoporous materialCarbonThe Journal of Physical Chemistry Letters
researchProduct

Le Dictionnaire de l’Académie française source des dictionnaires bilingues franco-italiens (1694-1870)

2016

L'articolo si propone di sondare l'influenza del Dictionnaire de l'Académie française sulla lessicografia bilingue franco-italiana in un arco cronologico compreso tra il 1694 e il 1870. In particolare, si passano in rassegna le prefazioni dei principali dizionari bilingui pubblicati nel periodo considerato, al fine di valutare se il Dictionnaire de l'Académie venga citato tra le fonti e qual uso il lessicografo intenda farne. The article aims to explore the influence of the Dictionnaire de l'Académie française on French-Italian bilingual lexicography in a chronological arc between 1694 and 1870. In particular, the prefaces of the main bilingual dictionaries published in the period considere…

Lexicographie français-italien17th-19th century lexicographersSettore L-LIN/04 - Lingua E Traduzione - Lingua FranceseFrench-Italian bilingual lexicographyLessicografia franco-italianaDictionnaire de l'Académie françaiselexicographes XVII-XIX siècleslessicografi XVII-XIX secolo
researchProduct

Suppression of mirror generalization for reversible letters: Evidence from masked priming

2011

Abstract Readers of the Roman script must “unlearn” some forms of mirror generalization when processing printed stimuli (i.e., herb and herd are different words). Here we examine whether the suppression of mirror generalization is a process that affects all letters or whether it mostly affects reversible letters (i.e., b / d ). Three masked priming lexical decision experiments were conducted to examine how the cognitive system processes mirror images of reversible vs. non-reversible letters embedded in Spanish words. Repetition priming effects relative to the mirror-letter condition were substantially greater when the critical letter was reversible (e.g., idea - IDEA vs. ibea - IDEA ) than …

Linguistics and LanguageMirror imageRepetition primingGraphemeExperimental and Cognitive PsychologyLanguage and LinguisticsPrime (symbol)Neuropsychology and Physiological PsychologyArtificial IntelligenceGeneralization (learning)Word recognitionLexical decision taskPsychologyPriming (psychology)Cognitive psychologyJournal of Memory and Language
researchProduct

Simulation of Fundamental Properties of CNT- and GNR-Metal Interconnects for Development of New Nanosensor Systems

2012

Cluster approach based on the multiple scattering theory formalism, realistic analytical and coherent potentials, as well as effective medium approximation (EMA-CPA), can be effectively used for nano-sized systems modeling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g., contacts of CNTs or (GNRs) with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems solving for resistance C-Me junctions with metal particles appear due to the influence of chirality effects …

Liquid metalMaterials scienceNanoelectronicsNanosensorElectrical resistivity and conductivitylawDangling bondNanotechnologyScattering theoryCarbon nanotubeGraphene nanoribbonslaw.invention
researchProduct

Scattering Processes in Nanocarbon-Based Nanointerconnects

2017

Cluster approach based on the multiple scattering theory (MST) formalism, realistic analytical and coherent potentials as well as effective medium approximation (EMA–CPA) can be effectively used for nanosized systems modelling. Major attention is paid now to applications of carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) with various morphology which possess unique physical properties in nanoelectronics, e.g. contacts of CNTs or GNRs with other conducting elements of a nanocircuit, which can be promising candidates for interconnects in high-speed electronics. The main problems connected with the resistance of C–Me junctions with metal particles appear due to the influence of chirali…

Liquid metalMaterials scienceScatteringNanotechnologyCarbon nanotubelaw.inventionMetalNanoelectronicslawElectrical resistivity and conductivityvisual_artvisual_art.visual_art_mediumElectronicsGraphene nanoribbons
researchProduct

M-theory, graphene-branes and superconducting wormholes

2017

Exploiting an M-brane system whose structure and symmetries are inspired by those of graphene (what we call a graphene-brane), we propose here a similitude between two layers of graphene joined by a nanotube and wormholes scenarios in the brane world. By using the symmetries and mathematical properties of the M-brane system, we show here how to possibly increase its conductivity, to the point of making it as a superconductor. The questions of whether and under which condition this might point to the corresponding real graphene structures becoming superconducting are briefly outlined.

M-theoryPhysicsSuperconductivityQuantum field theory in curved spacetimePhysics and Astronomy (miscellaneous)Condensed matter physics010308 nuclear & particles physicsGraphene01 natural sciencesSimilitudelaw.inventionTheoretical physicslaw0103 physical sciencesHomogeneous spaceBrane cosmologyWormhole010306 general physicsInternational Journal of Geometric Methods in Modern Physics
researchProduct

Mean-field theory for superconductivity in twisted bilayer graphene

2018

Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field $s$-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron--electron interaction mediated by electron--phonon coupling, but the flat-band nature of the excitation spectrum makes also superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…

Magic anglesuprajohtavuusFOS: Physical sciences02 engineering and technologysuperconducting order parameter01 natural sciencesSuperconductivity (cond-mat.supr-con)superconducting phase transitionCondensed Matter::Superconductivity0103 physical sciencesgrafeeni010306 general physicsPhysicsSuperconductivityCouplingta114Condensed matter physicsCondensed Matter - SuperconductivityDopingFunction (mathematics)021001 nanoscience & nanotechnologysuperconducting gapMean field theory0210 nano-technologyBilayer grapheneExcitationPhysical Review B
researchProduct

Studying the reduction of graphene oxide with magnetic measurements

2019

Abstract The reduction of graphene oxide is one of the most facile methods to fabricate a large amount of graphene. The reduction rate is generally examined by various spectroscopic techniques, but each technique is applied for different purposes. Herein, we demonstrate the correlation between spectroscopic results and magnetic data, which plays an important role in determining the quality of reduced graphene oxides. The magnetic signals are related with the carbon-oxygen functional groups analyzed by spectroscopic tools. Especially, highly reduced sample exhibits the diamagnetic property similar to graphene-like materials. This report can provide an insight to determine the reduction rate …

Magnetic measurementsMaterials scienceGrapheneReduction rateOxideNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionReduction (complexity)chemistry.chemical_compoundchemistrylawDiamagnetismGeneral Materials Science0210 nano-technologyCarbon
researchProduct