Search results for "Growth"

showing 10 items of 5134 documents

Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation

2017

The beneficial health properties of the Mediterranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW48…

0301 basic medicineCancer ResearchCarcinoma HepatocellularHepatocellular carcinomaOleocanthalExtra-virgin olive oilCellApoptosisCyclopentane Monoterpenes03 medical and health scienceschemistry.chemical_compound0302 clinical medicinePhenolsOleocanthalmedicineHumansCyclooxygenase InhibitorsViability assayOlive OilCaspaseCell ProliferationAldehydesbiologyCell growthLiver NeoplasmsApoptosiHep G2 CellsCell cycledigestive system diseasesColorectal carcinoma030104 developmental biologymedicine.anatomical_structureOncologychemistryApoptosisCell culture030220 oncology & carcinogenesisImmunologybiology.proteinCancer researchReactive oxygen specieColorectal NeoplasmsReactive Oxygen SpeciesDNA DamageInternational Journal of Oncology
researchProduct

Disruption of TCF/β-Catenin Binding Impairs Wnt Signaling and Induces Apoptosis in Soft Tissue Sarcoma Cells

2017

Abstract Soft tissue sarcomas (STS) are malignant tumors of mesenchymal origin and represent around 1% of adult cancers, being a very heterogeneous group of tumors with more than 50 different subtypes. The Wnt signaling pathway is involved in the development and in the regulation, self-renewal, and differentiation of mesenchymal stem cells, and plays a role in sarcomagenesis. In this study, we have tested pharmacologic inhibition of Wnt signaling mediated by disruption of TCF/β-catenin binding and AXIN stabilization, being the first strategy more efficient in reducing cell viability and downstream effects. We have shown that disruption of TCF/β-catenin binding with PKF118-310 produces in vi…

0301 basic medicineCancer ResearchCell SurvivalAntineoplastic AgentsApoptosisPyrimidinonesBiology03 medical and health sciences0302 clinical medicineCell Line TumormedicineHumansDoxorubicinViability assayWnt Signaling Pathwaybeta CateninCell ProliferationTriazinesCell growthCell CycleMesenchymal stem cellWnt signaling pathwayDrug SynergismSarcomaCell cycleMolecular biology030104 developmental biologyOncologyDoxorubicinCell culture030220 oncology & carcinogenesisCateninCancer researchTCF Transcription FactorsProtein Bindingmedicine.drugMolecular Cancer Therapeutics
researchProduct

AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression

2016

Accumulating evidences have shown the association between aberrantly expressed microRNAs (miRs) and cancer, where these small regulatory RNAs appear to dictate the cell fate by regulating all the main biological processes. We demonstrated the responsibility of the circuitry connecting the oncomiR-221&222 with the tumor suppressors miR-126&126∗ in melanoma development and progression. According to the inverse correlation between endogenous miR-221&222 and miR-126&126∗, respectively increasing or decreasing with malignancy, their enforced expression or silencing was sufficient for a reciprocal regulation. In line with the opposite roles of these miRs, protein analyses confirmed the reverse ex…

0301 basic medicineCancer ResearchCellular differentiationSettore MED/08 - Anatomia Patologicagrowth-factorCell fate determinationBiologyFatty Acid-Binding ProteinsBioinformaticsap-2 transcription factorlaw.inventioncutaneous melanoma03 medical and health sciencesMolecular Biology; Cancer Research; Genetics0302 clinical medicinelawTranscription (biology)Cell Line TumormicroRNAGeneticsmedicineHumansGene silencingMelanomaMolecular BiologyPsychological repressionsquamous-cell carcinoma; ap-2 transcription factor; cutaneous melanoma; growth-factor; metastatic melanoma; terminal fragment; cancer-cells; tumor-growth; mir-126; methylationMelanomaCell Differentiationsquamous-cell carcinomatumor-growthmedicine.diseaseMicroRNAscancer-cells030104 developmental biologyterminal fragmentmir-126030220 oncology & carcinogenesisDisease ProgressionCancer researchSuppressorOriginal Articlemethylationmetastatic melanomaOncogene
researchProduct

The phospholipase DDHD1 as a new target in colorectal cancer therapy

2018

Background Our previous study demonstrates that Citrus-limon derived nanovesicles are able to decrease colon cancer cell viability, and that this effect is associated with the downregulation of the intracellular phospholipase DDHD domain-containing protein 1 (DDHD1). While few studies are currently available on the contribution of DDHD1 in neurological disorders, there is no information on its role in cancer. This study investigates the role of DDHD1 in colon cancer. Methods DDHD1 siRNAs and an overexpression vector were transfected into colorectal cancer and normal cells to downregulate or upregulate DDHD1 expression. In vitro and in vivo assays were performed to investigate the functional…

0301 basic medicineCancer ResearchColorectal cancerApoptosisMiceSettore BIO/13 - Biologia ApplicataGene Regulatory NetworksMolecular Targeted TherapyCitrus-limon nanovesicleTransfectionlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens3. Good healthCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Oncology; Cancer ResearchOncologyPhospholipasesCitrus-limon nanovesicles; Colorectal cancer; Phospholipase DDHD1; Animals; Antineoplastic Agents; Apoptosis; Cell Line Tumor; Cell Proliferation; Colorectal Neoplasms; Computational Biology; Disease Models Animal; Female; Gene Expression Profiling; Gene Ontology; Gene Regulatory Networks; Gene Silencing; Humans; MAP Kinase Signaling System; Mice; Phospholipases; Signal Transduction; Xenograft Model Antitumor Assays; Biomarkers Tumor; Molecular Targeted TherapyFemaleColorectal NeoplasmsSignal TransductionMAP Kinase Signaling SystemAntineoplastic Agentslcsh:RC254-282Citrus-limon nanovesicles03 medical and health sciencesDownregulation and upregulationIn vivoCell Line TumorBiomarkers TumormedicineAnimalsHumansGene silencingGene SilencingPhospholipase DDHD1Cell Proliferationbusiness.industryCell growthGene Expression ProfilingResearchComputational BiologyCancermedicine.diseaseXenograft Model Antitumor AssaysColorectal cancerDisease Models AnimalGene Ontology030104 developmental biologyApoptosisCancer researchbusiness
researchProduct

AKT3 Expression in Mesenchymal Colorectal Cancer Cells Drives Growth and Is Associated with Epithelial-Mesenchymal Transition

2021

Simple Summary Colorectal cancer can be subdivided into four distinct subtypes that are characterised by different clinical features and responses to therapies currently used in the clinic to treat this disease. One of those subtypes, called CMS4, is associated with a worse prognosis and poor response to therapies compared to other subtypes. We therefore set out to explore what proteins are differentially expressed and used in CMS4 to find potential new targets for therapy. We found that protein AKT3 is highly expressed in CMS4, and that active AKT3 inhibits a protein that stalls growth of cancer cells (p27KIP1). We can target AKT3 with inhibitors which leads to strongly reduced growth of c…

0301 basic medicineCancer ResearchColorectal cancergrowthBiologylcsh:RC254-282AKT3Article03 medical and health sciences0302 clinical medicinemedicinemesenchymal CRCEpithelial–mesenchymal transitionAKT3CMSMesenchymal stem cellCell cyclemedicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensPhenotypeGene expression profiling030104 developmental biologyOncology030220 oncology & carcinogenesisCancer cellCancer researchSettore MED/46 - Scienze Tecniche Di Medicina Di LaboratorioCancers
researchProduct

Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours.

2017

KRAS is one of the most frequently mutated oncogenes in human non-small cell lung cancers (NSCLCs). RAS proteins trigger multiple effector signalling pathways including the highly conserved RAF-MAPK pathway. CRAF, a direct RAS effector protein, is required for KRAS-mediated tumourigenesis. Thus, the molecular mechanisms driving the activation of CRAF are intensively studied. Prohibitin 1 (PHB1) is an evolutionarily conserved adaptor protein and interaction of CRAF with PHB1 at the plasma membrane is essential for CRAF activation. Here, we demonstrate that PHB1 is highly expressed in NSCLC patients and correlates with poor survival. Targeting of PHB1 with two chemical ligands (rocaglamide an…

0301 basic medicineCancer ResearchEGF Family of ProteinsLung NeoplasmsBiologyLigandsProto-Oncogene Proteins p21(ras)03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineGrowth factor receptorRocaglamideEpidermal growth factorCarcinoma Non-Small-Cell LungCell Line TumorProhibitinsGeneticsAnimalsHumansMolecular Targeted TherapyProhibitinMolecular BiologyBenzofuransCell ProliferationRas InhibitorMice KnockoutTNF Receptor-Associated Factor 3EffectorXenograft Model Antitumor Assaysrespiratory tract diseasesCell biologyProto-Oncogene Proteins p21(ras)Gene Expression Regulation NeoplasticRepressor Proteins030104 developmental biologychemistry030220 oncology & carcinogenesisras Proteinsraf KinasesSignal transductionSignal TransductionOncogene
researchProduct

PHD3 Controls Lung Cancer Metastasis and Resistance to EGFR Inhibitors through TGFα.

2018

Abstract Lung cancer is the leading cause of cancer-related death worldwide, in large part due to its high propensity to metastasize and to develop therapy resistance. Adaptive responses to hypoxia and epithelial–mesenchymal transition (EMT) are linked to tumor metastasis and drug resistance, but little is known about how oxygen sensing and EMT intersect to control these hallmarks of cancer. Here, we show that the oxygen sensor PHD3 links hypoxic signaling and EMT regulation in the lung tumor microenvironment. PHD3 was repressed by signals that induce EMT and acted as a negative regulator of EMT, metastasis, and therapeutic resistance. PHD3 depletion in tumors, which can be caused by the EM…

0301 basic medicineCancer ResearchEpithelial-Mesenchymal TransitionLung NeoplasmsMice NudeAntineoplastic AgentsSMADDrug resistanceMetastasisHypoxia-Inducible Factor-Proline DioxygenasesMitochondrial Proteins03 medical and health sciencesErlotinib HydrochlorideMice0302 clinical medicineDownregulation and upregulationCell Line TumorTumor MicroenvironmentMedicineAnimalsHumansNeoplasm MetastasisLung cancerProtein Kinase InhibitorsEGFR inhibitorsbusiness.industryIntracellular Signaling Peptides and ProteinsCancerTransforming Growth Factor alphamedicine.diseaseHCT116 CellsXenograft Model Antitumor AssaysCell HypoxiaErbB Receptors030104 developmental biologyOncologyA549 CellsDrug Resistance Neoplasm030220 oncology & carcinogenesisembryonic structuresCancer researchFemaleErlotinibbusinessApoptosis Regulatory Proteinsmedicine.drugCancer research
researchProduct

Long Pentraxin 3-Mediated Fibroblast Growth Factor Trapping Impairs Fibrosarcoma Growth

2018

Fibrosarcomas are soft tissue mesenchymal tumors originating from transformed fibroblasts. Fibroblast growth factor-2 (FGF2) and its tyrosine-kinase receptors (FGFRs) play pivotal roles in fibrosarcoma onset and progression, FGF2 being actively produced by fibroblasts in all stages along their malignant transformation to the fibrosarcoma stage. The soluble pattern recognition receptor long pentraxin-3 (PTX3) is an extrinsic oncosuppressor whose expression is reduced in different tumor types, including soft tissue sarcomas, via hypermethylation of its gene promoter. PTX3 interacts with FGF2 and other FGF family members, thus acting as a multi-FGF antagonist able to inhibit FGF-dependent neov…

0301 basic medicineCancer ResearchFGF; FGF-trap; FGFR; fibrosarcoma; long pentraxin-3Fibroblast growth factorlcsh:RC254-282Malignant transformation03 medical and health sciences0302 clinical medicinemedicineFGFFibrosarcomaFibroblastReceptorneoplasmsOriginal ResearchFGF-trapintegumentary systemChemistryFGFRMesenchymal stem cellPTX3medicine.diseaselcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogens030104 developmental biologymedicine.anatomical_structurelong pentraxin-3OncologyFibroblast growth factor receptor030220 oncology & carcinogenesisCancer researchfibrosarcomaFrontiers in Oncology
researchProduct

Growth differentiation factor 15 as a radiation-induced marker in oral carcinoma increasing radiation resistance.

2015

Background Growth differentiation factor 15 (GDF15) is involved in tumor pathogenesis of oral squamous cell carcinoma (OSCC). The aim of this study was an investigation of the potential influence of GDF15 on radioresistance of OSCC cells in vitro. Methods Oral squamous cell carcinoma cell lines were irradiated with 0, 2, or 6 Gy, and GDF15 expression in the supernatant per survived cell colony was examined with ELISA. Non-irradiated and OSCC cell lines irradiated with 6 Gy were evaluated for GDF15 expression using immunofluorescent staining. For further investigation of GDF15 effects on radioresistance, a GDF15 knockdown model in a human OSCC cell line was established, and apoptotic activit…

0301 basic medicineCancer ResearchGrowth Differentiation Factor 15CellApoptosisEnzyme-Linked Immunosorbent AssayBiologymedicine.disease_causeReal-Time Polymerase Chain ReactionTransfectionPathology and Forensic Medicine03 medical and health sciences0302 clinical medicineRadioresistanceCell Line TumormedicineCarcinomaBiomarkers TumorHumansRNA Small InterferingMouth neoplasmSquamous Cell Carcinoma of Head and Neckmedicine.diseaseMolecular biologyNeoplasm Proteinsstomatognathic diseases030104 developmental biologymedicine.anatomical_structureOtorhinolaryngologyApoptosisCell cultureTumor progressionHead and Neck Neoplasms030220 oncology & carcinogenesisCaspasesGene Knockdown TechniquesCarcinoma Squamous CellPeriodonticsMouth NeoplasmsOral SurgeryCarcinogenesisJournal of oral pathologymedicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology
researchProduct

A receptor-antibody hybrid hampering MET-driven metastatic spread

2021

AbstractBackgroundThe receptor encoded by the MET oncogene and its ligand Hepatocyte Growth Factor (HGF) are at the core of the invasive-metastatic behavior. In a number of instances genetic alterations result in ligand-independent onset of malignancy (METaddiction). More frequently, ligand stimulation of wild-type MET contributes to progression toward metastasis (METexpedience). Thus, while MET inhibitors alone are effective in the first case, combination therapy with ligand inhibitors is required in the second condition.MethodsIn this paper, we generated hybrid molecules gathering HGF and MET inhibitory properties. This has been achieved by ‘head-to-tail’ or ‘tail-to-head’ fusion of a sin…

0301 basic medicineCancer ResearchImmunoconjugatesmedicine.medical_treatmentMice SCIDEpitopeFusion proteins; HGF; MET; Metastasis; Targeted therapy; A549 Cells; Animals; Binding Sites Antibody; Cell Line Tumor; Cell Proliferation; Female; Hepatocyte Growth Factor; Humans; Immunoconjugates; Immunoglobulin Fab Fragments; Mice; Mice SCID; Neoplasm Metastasis; Neoplasms; Proto-Oncogene Proteins c-met; Rats; Rats Sprague-Dawley; Recombinant Proteins; Xenograft Model Antitumor AssaysMetastasisTargeted therapyMetastasisRats Sprague-DawleyTargeted therapyMice0302 clinical medicineNeoplasmsHGFNeoplasm MetastasisReceptorTumorHepatocyte Growth FactorChemistryProto-Oncogene Proteins c-metlcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensRecombinant ProteinsOncology030220 oncology & carcinogenesisMETFemaleHepatocyte growth factormedicine.drugSCIDlcsh:RC254-282Cell LineImmunoglobulin Fab Fragments03 medical and health sciencesCell Line TumorPancreatic cancermedicineAnimalsHumansAntibodyCell ProliferationBinding SitesResearchmedicine.diseaseXenograft Model Antitumor AssaysFusion proteinRatsFusion proteins030104 developmental biologyA549 CellsCancer cellCancer researchBinding Sites AntibodySprague-DawleyJournal of Experimental & Clinical Cancer Research
researchProduct